Heterogeneous lowermost mantle: Compositional constraints and seismological observables
2005; American Geophysical Union; Linguagem: Inglês
10.1029/160gm08
ISSN2328-8779
AutoresHenri Samuel, C. G. Farnetani, D. Andrault,
Tópico(s)earthquake and tectonic studies
ResumoHeterogeneous Lowermost Mantle: Compositional Constraints and Seismological Observables H. Samuel, H. Samuel Laboratoire de Dynamique des Systèmes Géologiques, Institut de Physique du Globe de Paris, Paris, FranceSearch for more papers by this authorC. G. Farnetani, C. G. Farnetani Laboratoire de Dynamique des Systèmes Géologiques, Institut de Physique du Globe de Paris, Paris, FranceSearch for more papers by this authorD. Andrault, D. Andrault Institut de MinéRalogie Et de Physique Des Milieux Condensés, Paris, FranceSearch for more papers by this author H. Samuel, H. Samuel Laboratoire de Dynamique des Systèmes Géologiques, Institut de Physique du Globe de Paris, Paris, FranceSearch for more papers by this authorC. G. Farnetani, C. G. Farnetani Laboratoire de Dynamique des Systèmes Géologiques, Institut de Physique du Globe de Paris, Paris, FranceSearch for more papers by this authorD. Andrault, D. Andrault Institut de MinéRalogie Et de Physique Des Milieux Condensés, Paris, FranceSearch for more papers by this author Book Editor(s):Robert D. Van Der Hilst, Robert D. Van Der HilstSearch for more papers by this authorJay D. Bass, Jay D. BassSearch for more papers by this authorJan Matas, Jan MatasSearch for more papers by this authorJeannot Trampert, Jeannot TrampertSearch for more papers by this author First published: 01 January 2005 https://doi.org/10.1029/160GM08Citations: 8Book Series:Geophysical Monograph Series AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary This chapter contains sections titled: Introduction Calculation of Seismic Velocities Results Discussion Conclusions Appendix A: Conversion from Isothermal to Adiabatic Appendix B: Pressure Dependence of Cp References O. L. Anderson, Equations of State of Solids for Geophysics and Ceramic Science , 81, Oxford monographs on geology and geophysics, 1995. Google Scholar O. L. Anderson, H. Oda, D. Isaak, A model for the computation of thermal expansivity at high compression and high temperatures: MgO as an example, Geophys. Res. Lett, 19, 1987– 1990, 1992. 10.1029/92GL02145 Web of Science®Google Scholar D. Andrault, Evaluation of (Mg, Fe) partitioning between silicate perovskite and magnesiowüstite up to 120 GPa and 2300 K, J. Geophys. Res., 106, 2079– 2087, 2001. 10.1029/2000JB900362 CASWeb of Science®Google Scholar M Antolik, Y. J. Gu, G. Ekström, A. M. Dziewonski, J362D28: a new joint model of compressional and shear velocity in the Earth's mantle, Geophys. J. Int., 153, 443– 466, 2003. 10.1046/j.1365-246X.2003.01910.x Web of Science®Google Scholar F. Birch, Elasticity and consitution of the Earth's interior, J. Geophys. Res., 57, 227– 286, 1952. 10.1029/JZ057i002p00227 CASWeb of Science®Google Scholar L. Bréger, B. Romanowicz, L. Vinnick, Test of tomographic models of D" using differential travel time data, Geophys. Res. Lett, 25, 5– 8, 1998. 10.1029/97GL03359 Web of Science®Google Scholar L. Bréger, B. Romanowicz, C. Ng, The Pacific plume as seen by S, ScS, and SKS, Geophys. Res. Lett, 28, 1859– 1862, 2001. 10.1029/2000GL012526 Web of Science®Google Scholar J. M. Brown, T. J. Shankland, Thermodynamic parameters in the Earth as determined from seismic profiles, Geophys. J. R. Astron. Soc., 66, 579– 596, 1981. 10.1111/j.1365-246X.1981.tb04891.x Web of Science®Google Scholar A. Chopelas, R. Boehler, Thermal expansivity in the lower mantle, J. Geophys. Res., 19, 1983– 1986, 1992. 10.1029/92GL02144 Web of Science®Google Scholar G. F. Davies, Effective elastic moduli under hydrostatic stress. 1. Quasi-harmonic theory, J. Phys. Chem. Solids., 35, 1513– 1520, 1974. 10.1016/S0022-3697(74)80279-9 CASWeb of Science®Google Scholar F. Deschamps, J. Trampert, Mantle tomography and its relation to temperature and composition, Phys. Earth. Pl. Int., 140, 277– 291, 2003. 10.1016/j.pepi.2003.09.004 CASWeb of Science®Google Scholar A. Dewaele, F. Guyot, Thermal parameters of the Earth's lower mantle, Phys. Earth. Pl. Int., 107, 261– 267, 1998. 10.1016/S0031-9201(98)00095-8 CASWeb of Science®Google Scholar T. S. Duffy, D. L. Anderson, Seismic velocities in mantle minerals and the mineralogy of the upper mantle, J. Geophys. Res., 94, 1895– 1912, 1989. 10.1029/JB094iB02p01895 CASWeb of Science®Google Scholar A. M. Dziewonski, D. L. Anderson, Preliminary reference Earth model, Phys. Earth. Pl. Int., 25, 297– 356, 1981. 10.1016/0031-9201(81)90046-7 Web of Science®Google Scholar C. G. Farnetani, Excess temperature of mantle plumes : The role of chemical stratification across D", Geophys. Res. Lett, 24, 1,583– 1,586, 1997. 10.1029/97GL01548 CASWeb of Science®Google Scholar C. G. Farnetani, H. Samuel, Lagrangian structures and stirring in the Earth's mantle, Earth Planet. Sci. Lett., 206, 335– 348, 2003. 10.1016/S0012-821X(02)01085-3 CASWeb of Science®Google Scholar G. Fiquet, A. Dewaele, D. Andrault, M. Kunz, T. Le Bihan, Thermoelastic properties and crystal structure of MgSiO3 perovskite at lower mantle pressure and temperature conditions, Geophys. Res. Lett, 27, 21– 24, 2000. 10.1029/1999GL008397 CASWeb of Science®Google Scholar A. M. Forte, J. X. Mitrovica, Deep-mantle high-viscosity flow and thermochemical structure inferred from seismic and geodynamic data, Nature, 410, 1049– 1056, 2001. 10.1038/35074000 CASPubMedWeb of Science®Google Scholar P. Gillet, I. Daniel, F. Guyot, J. Matas, J.-C. Chervin, A thermodynamic model for MgSiO3 -perovskite derived from pressure, temperature and volume dependence of the raman mode frequencies, Phys. Earth. Pl. Int., 117, 361– 384, 2000. 10.1016/S0031-9201(99)00107-7 CASWeb of Science®Google Scholar S. P. Grand, R. D. van der Hilst, S. Widiyantoro, High resolution global tomography: A snapshot of convection in the Earth, Geol. Soc. Am. Today, 7, 1– 7, 1997. PubMedGoogle Scholar N. Guignot, D. Andrault, Equations of state of Na-K-A1 host phases and implications for MORB density in the lower mantle, Phys. Earth. Pl. Int., 143–144, 107– 128, 2004. 10.1016/j.pepi.2003.09.014 CASWeb of Science®Google Scholar F. Guyot, M. Madon, J. Peyronneau, J.-P. Poirier, X-ray microanalysis of high-pressure/high-temperature phases synthesized from natural olivine in a diamond-anvil cell, Earth Planet. Sci. Lett., 90, 52– 64, 1988. 10.1016/0012-821X(88)90110-0 CASWeb of Science®Google Scholar F. Guyot, J. Zhang, I. Martinez, J. Matas, Y. Ricard, M. Javoy, P-V-T measurements of iron silicide (ϵ-FeSi). Implications for silicate-metal interactions in the early Earth, Eur. J. Mineral, 9, 277– 285, 1997. 10.1127/ejm/9/2/0277 CASWeb of Science®Google Scholar J. Hama, K. Suito, Thermoelastic properties of periclase and magnesiowüstite under high pressure and temperature, Phys. Earth. Pl. Int., 114, 165– 179, 1999. 10.1016/S0031-9201(99)00052-7 CASWeb of Science®Google Scholar K. Y. Hirose, Y. M. A. Fei, H. K. Mao, The fate of subducted basaltic crust in the Earth's lower mantle, Nature, 397, 53– 56, 1999. 10.1038/16225 CASWeb of Science®Google Scholar A. W. Hofmann, Mantle geochemistry: the message from oceanic volcanism, Nature, 385, 219– 229, 1997. 10.1038/385219a0 CASWeb of Science®Google Scholar D. G. Isaak, O. L. Anderson, T. Goto, Measured elastic modulus of single-crystal MgO up to 1800 K, Phys. Chem. Miner, 16, 703– 704, 1989. 10.1007/BF00223321 Web of Science®Google Scholar M. Ishii, J. Tromp, Normal-mode and free-air gravity constraints on lateral variations in velocity and density of Earth's mantle, Science, 285, 1231– 1236, 1999. 10.1126/science.285.5431.1231 CASPubMedWeb of Science®Google Scholar I. Jackson, Elasticity, composition and temperature of the Earth's lower mantle: a reappraisal, Geophys. J. Int., 134, 291– 311, 1998. 10.1046/j.1365-246x.1998.00560.x Web of Science®Google Scholar I. Jackson, S. M. Rigden, Analysis of P-V-T data: constraints on the thermoelastic properties of high-pressure minerals, Phys. Earth. Pl. Int., 96, 85– 112, 1996. 10.1016/0031-9201(96)03143-3 CASWeb of Science®Google Scholar M. Javoy, The integral enstatite chondrite model of the Earth, Geophys. Res. Lett, 22, 2219– 2222, 1995. 10.1029/95GL02015 CASWeb of Science®Google Scholar S.-L Karato, Importance of anelasticity in the interpretation of seismic tomography, Geophys. Res. Lett, 20, 1623– 1626, 1993. 10.1029/93GL01767 Web of Science®Google Scholar S.-T Karato, B. B. Karki, Origin of lateral variation of seismic wave velocities and density in the deep mantle, J. Geophys. Res., 106, 21,771– 21,783, 2001. 10.1029/2001JB000214 Web of Science®Google Scholar B. B. Karki, L. Stixrude, Seismic velocities of major silicate and oxide phases of the lower mantle, J. Geophys. Res., 104, 13,025– 13,033, 1999. 10.1029/1999JB900069 CASWeb of Science®Google Scholar L. H. Kellogg, B. H. Hager, R. D. van der Hilst, Compositional stratification in the deep mantle, Science, 283, 1,881– 1,884, 1999. 10.1126/science.283.5409.1881 CASWeb of Science®Google Scholar B. L. N. Kennett, S. Widiyantoro, R. D. van der Hilst, Joint seismic tomography for bulk sound and shear wave speed in the Earth's mantle, J. Geophys. Res., 103, 12,469– 12,493, 1998. 10.1029/98JB00150 Web of Science®Google Scholar E. Knittle, R. Jeanloz, Earth's core-mantle boundary: Results of experiments at high pressures and temperatures, Science, 251, 1,438– 1,443, 1991. 10.1126/science.251.5000.1438 CASWeb of Science®Google Scholar M. Lebars, A. Davaille, Stability of thermal convection in two superimposed miscible viscous fluids, J. Fluid Mech., 471, 339– 363, 2002. 10.1017/S0022112002001878 Web of Science®Google Scholar X. Li, B. Romanowicz, Global mantle shear velocity model developed using nonlinear asymptotic coupling theory, J. Geophys. Res., 101, 22,245– 22,272, 1996. 10.1029/96JB01306 Web of Science®Google Scholar G. Masters, G. Laske, H. Bolton, A. M. Dziewonski, The relative behavior of shear velocity, bulk sound speed and com-pressional velocity in the mantle: implication for chemical and thermal structure, Earth's deep interior. Mineral physics and tomography from the atomic to the global scale, 117, S.-I. Karato, A. Forte, R. C. Liebermann, G. Masters, L. Stixrude, 63– 87, American Geophysical Union, Washington, DC, 2000. 10.1029/GM117p0063 Google Scholar M. Matsui, Molecular dynamics simulation of MgSiO3 perovskite and the 660-km seismic discontinuity, Phys. Earth. Pl. Int., 121, 77– 84, 2000. 10.1016/S0031-9201(00)00161-8 CASWeb of Science®Google Scholar W. F. McDonough, S. Sun, The composition of the Earth, Chem. Geol, 120, 223– 253, 1995. 10.1016/0009-2541(94)00140-4 CASWeb of Science®Google Scholar C Meade, P. G. Silver, S. Kaneshima, Laboratory and seismological observations of lower mantle anisotropy, Geophys. Res. Lett, 22, 1293– 1296, 1995. 10.1029/95GL01091 Web of Science®Google Scholar C Mégnin, B. Romanowicz, The three-dimensional shear velocity structure of the mantle from the inversion of body, surface and higher-mode waveforms, Geophys. J. Int., 143, 709– 728, 2000. 10.1046/j.1365-246X.2000.00298.x Web of Science®Google Scholar J.-R Poirier, Introduction to the physics of the Earth's interior, Cambridge University Press, 1991. Google Scholar G. S. Robertson, J. H. Woodhouse, Ratio of relative S to P heterogeneity in the lower mantle, J. Geophys. Res., 101, 20,041– 20,052, 1996. 10.1029/96JB01905 Web of Science®Google Scholar B. Romanowicz, Can we resolve 3D density heterogeneity in the lower mantle?, Geophys. Res. Lett, 6, 1107– 1110, 2001. 10.1029/2000GL012278 Web of Science®Google Scholar R. L. Saltzer, R. D. van der Hilst, H. Kàrason, Comparing P and S wave heterogeneity in the mantle, Geophys. Res. Lett, 28, 1335– 1338, 2001. 10.1029/2000GL012339 Web of Science®Google Scholar H. Samuel, C. G. Farnetani, Thermochemical convection and helium concentrations in mantle plumes, Earth Planet. Sci. Lett., 207, 39– 56, 2003. 10.1016/S0012-821X(02)01125-1 CASWeb of Science®Google Scholar I. Sidorin, M. Gurnis, Geodynamically consistent seismic velocity predictions at the base of the mantle, The Core-Mantle Boundary Region, M. Gurnis, M. E. Wysession, E. Knittle, B. A. Buffett, 209– 230, American Geophysical Union, Washington, DC, 1998. 10.1029/GD028p0209 Web of Science®Google Scholar Y. D. Sinelnikov, G. Chen, D. R. Neuville, M. T. Vaughan, R. C. Liebermann, Ultrasonic shear wave velocities of MgSiO3 perovskite at 8 GPa and 800 K and lower mantle composition, Science, 281, 677– 679, 1998. 10.1126/science.281.5377.677 CASPubMedWeb of Science®Google Scholar F. D. Stacey, P. M. Davis, High pressure equations of state with applications to the lower mantle and core, Phys. Earth. Pl. Int., 142, 137– 184, 2004. 10.1016/j.pepi.2004.02.003 CASWeb of Science®Google Scholar W. Su, A. M. Dziewonski, Predominance of long-wavelength heterogeneity in the mantle, Nature, 352, 121– 126, 1991. 10.1038/352121a0 Web of Science®Google Scholar Y. Sunmino, O. L. Anderson, Y. Suzuki, Temperature coefficients of single cristal MgO between 80 and 1300 K, Phys. Chem. Miner., 9, 38– 47, 1983. Google Scholar I. Suzuki, Thermal expansion of periclase and olivive, and their anharmonic properties, J. Phys. Earth, 23, 145– 159, 1975. 10.4294/jpe1952.23.145 Web of Science®Google Scholar P. J. Tackley, Strong heterogeneity caused by deep mantle layering, Geochem. Geophys. Geosyst., 5, 4, 10.1029/2001GC000167, 2002. Google Scholar D. L. Turcotte, G. Schubert, Geodynamics: Application of continuum physics to geological problems, John Wiley, New York, 1982. Google Scholar P. Vacher, A. Mocquet, C. Sotin, Comparison between tomographic structures and models of convection in the upper mantle, Geophys. J. Int., 124, 45– 56, 1996. 10.1111/j.1365-246X.1996.tb06351.x Web of Science®Google Scholar R. D. van der Hilst, S. Widiyantoro, E. R. Engdahl, Evidence for deep mantle circulation from global tomography, Nature, 386, 578– 584, 1997. 10.1038/386578a0 CASWeb of Science®Google Scholar Y Wang, D. J. Weidner, ∂μ/∂T)p of the lower mantle, Pure Appl. Geophys., 146, 533– 549, 1996. 10.1007/BF00874732 Web of Science®Google Scholar Z. W. Wang, The melting of Al-bearing perovskite at the core mantle boundary, Phys. Earth. Pl. Int., 115, 219– 228, 1999. 10.1016/S0031-9201(99)00078-3 CASWeb of Science®Google Scholar J. Watt, G. Davies, R. O'Connel, The elastic properties of composite materials, Rev. Geophys. Space Phys., 14, 541– 563, 1976. 10.1029/RG014i004p00541 CASWeb of Science®Google Scholar A. Yeganeh-Haeri, Synthesis and re-investigation of the elastic properties of single-crystal magnesium silicate perovskite, Phys. Earth. Pl. Int., 87, 111– 121, 1994. 10.1016/0031-9201(94)90025-6 CASWeb of Science®Google Scholar S. Zhong, B. H. Hager, Entraiment of a dense layer by thermal plumes, Geophys. J. Int., 154, 666– 676, 2003. 10.1046/j.1365-246X.2003.01988.x Web of Science®Google Scholar Citing Literature Earth's Deep Mantle: Structure, Composition, and Evolution, Volume 160 ReferencesRelatedInformation
Referência(s)