Artigo Revisado por pares

Deuterium-tritium experiments on TFTR

1995; American Institute of Physics; Linguagem: Inglês

10.1063/1.49012

ISSN

1935-0465

Autores

N. Bretz, H. Adler, P. Alling, C. Ancher, H. Anderson, Jon W. Anderson, V. Arunasalam, G. Ascione, C. W. Barnes, G. Barnes, S.H. Batha, G. Bateman, M Beer, Michael G.H. Bell, R. E. Bell, M. Bitter, W. Blanchard, C. Brunkhorst, R. Budny, C. E. Bush, R. Camp, M. Caorlin, H. Carnevale, Steve Cauffman, Z. Chang, Chen Cheng, J. Chrzanowski, J. Collins, G. Coward, M. Cropper, D. S. Darrow, R. Daugert, John DeLooper, W. Dorland, L. Dudek, H. H. Duong, R. Durst, P. C. Efthimion, Daniel Ernst, Harold Evensen, N. J. Fisch, R. K. Fisher, R. J. Fonck, E. Fredd, E. D. Fredrickson, R. Fromm, G. Y. Fu, Takao Fujita, H. P. Furth, V. Garzotto, Carmelo Gentile, J. Gilbert, J. Giola, Н. Н. Гореленков, B. Grek, L. R. Grisham, G. W. Hammett, G. R. Hanson, R.J. Hawryluk, W.W. Heidbrink, H. W. Herrmann, K. W. Hill, J. Hosea, H. Hsuan, M.H. Hughes, R. Hülse, A. Janos, D.L. Jassby, F. C. Jobes, D. Johnson, L. C. Johnson, M. Kalish, J. Kamperschroer, J. Kesner, H. Kugel, G. Labik, N. T. Lam, P. H. LaMarche, E. Lawson, B. LeBlanc, Joshua Levine, F. M. Levinton, D. Loesser, David M. Long, M. Loughlin, J. S. Machuzak, R. Majeski, D. K. Mansfield, E. Marmar, R. Marsala, Alex Martin, G. Martín, M. E. Mauel, E. Mazzucato, M. McCarthy, J. M. McChesney, B. McCormack, D. McCune, K. McGuire, G. W. McKee, D. M. Meade, S. S. Medley, D. R. Mikkelsen, С. В. Мирнов, D. Mueller, Masashi Murakami, John A. Murphy, A. Nagy, G. A. Navratil, R. Nazikian, R. Newman, M. K. Gaedeke Norris, T. O’Connor, M.E. Oldaker, J. Ongena, M. Osakabe, D.K. Owens, H. Park, W. Park, P.B. Parks, S. Paul, Gavin Pearson, E. Perry, R. Persing, M. Petrov, C. K. Phillips, Michael W. Phillips, S. Pitcher, R. Pysher, A. L. Qualls, S. Raftapoulos, S. Ramakrishnan, A.T. Ramsey, D. A. Rasmunsen, M.H. Redi, G. Renda, G. Rewoldt, D. Roberts, John A. Rogers, R. Rossmassler, A. L. Roquemore, E. Ruskov, S. A. Sabbaugh, M. Sasao, G. Schilling, J. Schivell, G. Schmidt, R. Scillia, S. D. Scott, I.B. Semenov, T. Senko, S. Šesnić, R.A.P. Sissingh, C. H. Skinner, J. Snipes, J.R. Stencel, J. Stevens, T. N. Stevenson, W. Stodiek, J.D. Strachan, B. C. Stratton, J. Swanson, E. J. Synakowski, H. Takahashi, W. M. Tang, G. Taylor, J. L. Terry, Mark E. Thompson, W. Tighe, J. Timberlake, K. Tobita, H.H. Towner, M. Tuszewski, A. von Halle, C. Vannoy, M. Viola, S. von Goeler, D. Voorhees, R.T. Walters, Roland Wester, R. S. White, R. Wieland, J. B. Wilgen, M. Williams, J. R. Wilson, Julius Winston, Kathryn Wright, Ka‐Leung Wong, P. Woskov, G. A. Wurden, Masaki Yamada, S. Yoshikawa, K. M. Young, M. C. Zarnstorff, V. Zavereev, S. Zweben,

Tópico(s)

Particle accelerators and beam dynamics

Resumo

A peak fusion power production of 9.3±0.7 MW has been achieved on the Tokamak Fusion Test Reactor (TFTR) in deuterium plasmas heated by co and counter injected deuterium and tritium neutral beams with a total power of 33.7 MW. The ratio of fusion power output to heating power input is 0.27. At the time of the highest neutron flux the plasma conditions are: Te(0)=11.5 keV, Ti(0)=44 keV, ne(0)=8.5×1019 m−3, and 〈Zeff〉=2.2 giving τE=0.24 s. These conditions are similar to those found in the highest confinement deuterium plasmas. The measured D‐T neutron yield is within 7% of computer code estimates based on profile measurements and within experimental uncertainties. These plasmas have an inferred central fusion alpha fraction of 0.2% and central fusion power density of 2 MW/m3 similar to that expected in a fusion reactor. Even though the alpha velocity exceeds the Alfven velocity throughout the time of high neutron output in most high power plasmas, MHD activity is not substantially different from that in comparable deuterium plasmas and Alfven wave activity is low. The measured loss rate of energetic alpha particles is about 3% of the total as expected from alphas which are born on unconfined orbits. Compared to pure deuterium plasmas with similar externally applied conditions, the stored energy in electrons and ions is about 25% higher indicating improvements in confinement associated with D‐T plasmas and consistent with modest electron heating expected from alpha particles. ICRF heating of D‐T plasmas using up to 5.5 MW has resulted in 10 keV increases in central ion and 2.5 keV increases in central electron temperatures in relatively good agreement with code predictions. In these cases heating on the magnetic axis at 2ΩT gave up to 80% of the ICRF energy to ions.

Referência(s)
Altmetric
PlumX