Revisão Revisado por pares

Sympathoadrenal System in Stress

1995; Wiley; Volume: 771; Issue: 1 Linguagem: Inglês

10.1111/j.1749-6632.1995.tb44676.x

ISSN

1749-6632

Autores

Richard Květňanský, Karel Pacák, Kouki Fukuhara, E Viskupic, Bhargava Hiremagalur, Bistra B. Nankova, David S. Goldstein, Esther L. Sabban, Irwin J. Kopin,

Tópico(s)

Adipose Tissue and Metabolism

Resumo

Annals of the New York Academy of SciencesVolume 771, Issue 1 p. 131-158 Sympathoadrenal System in Stress Interaction with the Hypothalamic-Pituitary-Adrenocortical Systema R. KVETŇANSKÝ, R. KVETŇANSKÝ Institute of Experimental Endocrinology Slovak Academy of Sciences Bratislava, Slovakia Mailing address: Institute of Experimental Endocrinology, Slovak Academy of Sciences, Vlarska 3, 833 06 Bratislava, Slovak Republic.Search for more papers by this authorK. PACÁK, K. PACÁK National Institute of Neurological Disorders and Stroke National Institutes of Health Bethesda, MarylandSearch for more papers by this authorK. FUKUHARA, K. FUKUHARA National Institute of Neurological Disorders and Stroke National Institutes of Health Bethesda, MarylandSearch for more papers by this authorE. VISKUPIČ, E. VISKUPIČ Institute of Experimental Endocrinology Slovak Academy of Sciences Bratislava, SlovakiaSearch for more papers by this authorB. HIREMAGALUR, B. HIREMAGALUR New York Medical College Valhalla, New YorkSearch for more papers by this authorB. NANKOVA, B. NANKOVA New York Medical College Valhalla, New YorkSearch for more papers by this authorD. S. GOLDSTEIN, D. S. GOLDSTEIN National Institute of Neurological Disorders and Stroke National Institutes of Health Bethesda, MarylandSearch for more papers by this authorE. L. SABBAN, E. L. SABBAN New York Medical College Valhalla, New YorkSearch for more papers by this authorI. J KOPIN, I. J KOPIN National Institute of Neurological Disorders and Stroke National Institutes of Health Bethesda, MarylandSearch for more papers by this author R. KVETŇANSKÝ, R. KVETŇANSKÝ Institute of Experimental Endocrinology Slovak Academy of Sciences Bratislava, Slovakia Mailing address: Institute of Experimental Endocrinology, Slovak Academy of Sciences, Vlarska 3, 833 06 Bratislava, Slovak Republic.Search for more papers by this authorK. PACÁK, K. PACÁK National Institute of Neurological Disorders and Stroke National Institutes of Health Bethesda, MarylandSearch for more papers by this authorK. FUKUHARA, K. FUKUHARA National Institute of Neurological Disorders and Stroke National Institutes of Health Bethesda, MarylandSearch for more papers by this authorE. VISKUPIČ, E. VISKUPIČ Institute of Experimental Endocrinology Slovak Academy of Sciences Bratislava, SlovakiaSearch for more papers by this authorB. HIREMAGALUR, B. HIREMAGALUR New York Medical College Valhalla, New YorkSearch for more papers by this authorB. NANKOVA, B. NANKOVA New York Medical College Valhalla, New YorkSearch for more papers by this authorD. S. GOLDSTEIN, D. S. GOLDSTEIN National Institute of Neurological Disorders and Stroke National Institutes of Health Bethesda, MarylandSearch for more papers by this authorE. L. SABBAN, E. L. SABBAN New York Medical College Valhalla, New YorkSearch for more papers by this authorI. J KOPIN, I. J KOPIN National Institute of Neurological Disorders and Stroke National Institutes of Health Bethesda, MarylandSearch for more papers by this author First published: December 1995 https://doi.org/10.1111/j.1749-6632.1995.tb44676.xCitations: 152 a Supported by Fogarty Award (TW-00108), Slovak Grant Agency for Science (2-543/93) and United States Slovak Science and Technology Joint Fund (Project No 93 024). AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat REFERENCES 1 E. Usdin, R. Kvetňanský & I. J. Kopin, Eds. 1976. Catecholamines and Stress. Pergamon Press. Oxford , England . Google Scholar 2 E. Usdin, R. Kvetňanský & I. J. Kopin, Eds. 1980. Catecholamines and Stress: Recent Advances. Elsevier North Holland. New York , NY . Google Scholar 3 E. Usdin, R. Kvetňanský & J. Axelrod, Eds. 1984. Stress: the Role of Catecholamines and Other Neurotransmitters. Vol. 1 and 2. Gordon and Breach Sci. Publ. New York , NY . Google Scholar 4 G. P. Chrousos, D. L. Loriaux & P. W. Gold, Eds. 1988. Mechanisms of Physical and Emotional Stress. Vol. 245. Advances in Experimental Medicine and Biology. Plenum Press. New York , NY . Google Scholar 5 G. R. Loon, R. Kvetňanský, R. McCarty & J. Axelrod, Eds. 1989. Stress: Neurochemical and Humoral Mechanisms. Vol. 1 and 2. Gordon and Breach Sci. Publ. New York , NY . Google Scholar 6 M. R. Brown, G. F. Koob & C. Rivier, Eds. 1991. Stress: Neurobiology and Neuroendocrinology. Marcel Dekker, Inc. New York , NY . Google Scholar 7 J. A. McCubbin, P. G. Kaufmann & Ch. B. Nemeroff, Eds. 1991. Stress: Neuropeptides, and Systemic Disease. Academic Press, Inc. San Diego , CA . Google Scholar 8 R. Kvetňanský, R. McCarty & J. Axelrod, Eds. 1992. Stress: Neuroendocrine and Molecular Approaches. Vol. 1 and 2. Gordon and Breach Sci. Publ. New York , NY . Google Scholar 9 D. S. Goldstein, Ed. 1995. Stress, Catecholamines, and Cardiovascular Disease. Oxford University Press. New York , NY . Google Scholar 10 Kvetňanský, R., K. Fukuhara, K. Pacák, G. CIZZA, D. S. Goldstein & I. J. Kopin. 1993. Endogenous glucocorticoids restrain catecholamine synthesis and release at rest and during immobilization stress in rats. Endocrinology 133: 1411–1419. 10.1210/en.133.3.1411 CASPubMedWeb of Science®Google Scholar 11 Ramey, E. R. & M. S. Goldstein. 1957. The adrenal cortex and the sympathetic nervous system. Physiol. Rev. 37: 155–195. 10.1152/physrev.1957.37.2.155 CASPubMedWeb of Science®Google Scholar 12 Axelrod, J. 1977. Catecholamines: effects of ACTH and adrenal corticoids. Ann. N.Y. Acad. Sci. 297: 275–283. 10.1111/j.1749-6632.1977.tb41860.x CASPubMedGoogle Scholar 13 Axelrod, J. & T. D. Reisine. 1984. Stress hormones: their interaction and regulation. Science 224: 452–459. 10.1126/science.6143403 CASPubMedWeb of Science®Google Scholar 14 Munck, A., P. M. Guyre & N. J. Holbrook. 1984. Physiological functions of glucocorticoids in stress and their relation to pharmacological actions. Endocr. Rev. 5: 25–44. 10.1210/edrv-5-1-25 CASPubMedWeb of Science®Google Scholar 15 Munck, A. & A. Naray-Fejes-Toth. 1992. The ups and downs of glucocorticoid physiology. Permissive and suppressive effects revisited. Mol. Cell. Endocr. 90: C1–C4. 10.1016/0303-7207(92)90091-J CASPubMedWeb of Science®Google Scholar 16 Wurtman, R. J. & J. Axelrod. 1966. Control of enzymatic synthesis of adrenaline in the adrenal medulla by adrenal cortical steroids. J. Biol. Chem. 241: 2301–2305. CASPubMedWeb of Science®Google Scholar 17 Kvetňanský, R. 1973. Transsynaptic and humoral regulation of adrenal catecholamine synthesis in stress. In Frontiers in Catecholamine Research. E. Usdin & S. Snyder, Eds.: 223–229. Pergamon Press. New York , NY . 10.1016/B978-0-08-017922-3.50040-X Google Scholar 18 Al-Damluji, S. 1988. Adrenergic mechanisms in the control of corticotrophin secretion. J. Endocr. 119: 5–14. 10.1677/joe.0.1190005 CASPubMedWeb of Science®Google Scholar 19 Al-Damluji, S. 1993. Adrenergic control of the secretion of anterior pituitary hormones. Bailliere's Clin. Endocrinol. Metab. 7: 355–392. 10.1016/S0950-351X(05)80180-6 CASPubMedWeb of Science®Google Scholar 20 Plotsky, P. M., E. T. Cunningham & E. P. Widmaier. 1989. Catecholaminergic modulation of corticotropin-releasing factor and adrenocorticotropin secretion. Endocr. Rev. 10: 437–458. 10.1210/edrv-10-4-437 CASPubMedWeb of Science®Google Scholar 21 Whitnall, M. H. 1993. Regulation of the hypothalamic corticotropin-releasing hormone neurosecretory system. Prog. Neurobiol. 40: 573–629. 10.1016/0301-0082(93)90035-Q CASPubMedWeb of Science®Google Scholar 22 Pacák, K., M. Palkovits, I. J. Kopin & D. S. Goldstein. 1995. Stress-induced norepinephrine release in the hypothalamic paraventricular nucleus and pituitary-adrenocortical and sympathoadrenal activity: in vivo microdialysis studies. Fron. Neuroendocrinol. 16: 89–150. 10.1006/frne.1995.1004 CASPubMedWeb of Science®Google Scholar 23 Brown, M. R. & L. A. Fisher. 1985. Corticotropin-releasing factor: effects on the autonomic nervous system and visceral systems. Fed. Proc. 44: 234–248. Google Scholar 24 Brown, M. R. & L. A. Fisher. 1986. Glucocorticoid supression of the sympathetic nervous system and adrenal medulla. Life Sci. 39: 1003–1012. 10.1016/0024-3205(86)90289-4 CASPubMedWeb of Science®Google Scholar 25 Lenz, H. J., A. Raedler, H. Greten & M. R. Brown. 1987. CRF initiates actions within the brain that are observed in response to stress. Am. J. Physiol. 252: R34–R39. CASPubMedWeb of Science®Google Scholar 26 Goldstein, D. S., M. Garty, G. Bagdy, K. Szemeredi, E. M. Sternberg, S. Listwak, K. Pacák, A. Deka-Starosta, A. Hoffman, P. C. Chang, R. Stull, P. W. Gold & I. J. Kopin. 1993. Role of CRH in glucopenia-induced adrenomedullary activation in rats. J. Neuroendocr. 5: 475–486. 10.1111/j.1365-2826.1993.tb00511.x CASPubMedWeb of Science®Google Scholar 27 Kurosawa, M., A. Sato, R. S. Swenson & Y. Takahashi. 1986. Sympatho-adrenal medullary functions in response to intracerebroventricularly injected corticotropin-releasing factor in anesthetized rats. Brain Res. 367: 250–257. 10.1016/0006-8993(86)91599-4 CASPubMedWeb of Science®Google Scholar 28 Makara, G. B., R. Kvetňanský, D. Jezova, A. Jindra, I. Kakucska & Z. Oprasalova. 1986. Plasma catecholamines do not participate in pituitary-adrenal activation by immobilization stress in rats with transection of nerve fibers to the median eminence. Endocrinology 119: 1757–1762. 10.1210/endo-119-4-1757 CASPubMedWeb of Science®Google Scholar 29 Kvetňanský, R., G. B. Makara, Z. Oprsalova, M. Dobrakovova & D. Jezova. 1988. Increased basal and stress-induced sympathetic activity in rats with lesion or deafferentation of the medial basal hypothalamus. Biogen. Amines 5: 275–290. Web of Science®Google Scholar 30 Culman, J., C. C. Chiueh, O. Foldes & I. J. Kopin. 1989. Circulating catecholamines are not involved in immobilization stress-induced plasma ACTH rise in rats with transection of the pituitary stalk. In Stress: Neurochemical and Humoral Mechanisms. G. R. Loon, R. Kvetňanský, R. McCarty & J. Axelrod, Eds.: 425–436. Gordon and Breach. New York , NY . Google Scholar 31 Pacák, K., R. Kvetňanský, M. Palkovits, K. Fukuhara, G. Yadid, I. J. Kopin & D. S. Goldstein. 1993. Adrenalectomy augments in vivo release of norepinephrine in the paraventricular nucleus during immobilization stress. Endocrinology 133: 1404–1410. 10.1210/en.133.3.1404 CASPubMedWeb of Science®Google Scholar 32 Pacák, K., I. Armando, S. Komoly, K. Fukuhara, V. K. Weise, C. Holmes, I. J. Kopin & D. S. Goldstein. 1992. Hypercortisoleí inhibits yohimbine-induced release of norepinephrine in the posterolateral hypothalamus of conscious rats. Endocrinology 131: 1369–1376. 10.1210/en.131.3.1369 PubMedWeb of Science®Google Scholar 33 Jhanwar-Uniyal, M. & S. F. Leibowitz. 1986. Impact of circulating corticosterone on α1 and α2-noradrenergic receptors in discrete brain areas. Brain Res. 386: 404–408. 10.1016/0006-8993(86)90591-3 Web of Science®Google Scholar 34 Valenta, L. J., A. N. Elias & H. Eisenberg. 1986. ACTH stimulation of adrenal epinephrine and norepinephrine release. Horm. Res. 23: 16–20. 10.1159/000180283 CASPubMedWeb of Science®Google Scholar 35 Iversen, L. L. & P. J. Salt. 1970. Inhibition of catecholamine uptake2 by steroids in the isolated rat heart. Br. J. Pharmacol. 40: 528–530. 10.1111/j.1476-5381.1970.tb10637.x CASPubMedWeb of Science®Google Scholar 36 Salt, P. J. 1972. Inhibition of noradrenaline uptake2 in the isolated rat heart by steroids, clonidine and methoxylated phenylethylamines. Eur. J. Pharmacol. 20: 329–340. 10.1016/0014-2999(72)90194-X CASPubMedWeb of Science®Google Scholar 37 Szemeredi, K., G. Bagdy, R. Stull, A. E. Calogero, I. J. Kopin & D. S. Goldstein. 1988. Sympathomedullary inhibition by chronic glucocorticoid treatment in conscious rats. Endocrinology 123: 2585–2590. 10.1210/endo-123-5-2585 CASPubMedWeb of Science®Google Scholar 38 Szemeredi, K., G. Bagdy, I. J. Kopin & D. S. Goldstein. 1989. Neurocirculatory regulation in cortisol-induced hypertension. Clin. Exp. Hyper. A11: 1425–1439. 10.3109/10641968909038174 CASWeb of Science®Google Scholar 39 Szemeredi, K., G. Bagdy, R. Stull, I. J. Kopin & D. S. Goldstein. 1990. Cortisol and alpha2 adrenergic regulation of sympathoneural activity. Biogenic Amines 7: 445–454. CASWeb of Science®Google Scholar 40 Udelsman, R., J. P. Harwood, M. A. Millan, G. P. Chrousos, D. S. Goldstein, R. Zimlichman, K. L. Catt & G. Aguilera. 1986. Functional corticotropin releasing factor receptors in the primate peripheral sympathetic nervous system. Nature 319: 147–150. 10.1038/319147a0 CASPubMedWeb of Science®Google Scholar 41 Collins, S., M. G. Caron, & R. J. Lefkowitz. 1988. β2-adrenergic receptors in hamster smooth muscle cells are transcriptionally regulated by glucocorticoids. J. Biol. Chem. 263: 9067–9070. CASPubMedWeb of Science®Google Scholar 42 Kvetňanský, R. & E. L. Sabban. 1993. Stress-induced changes in tyrosine hydroxylase and other catecholamine biosynthetic enzymes. In Tyrosine Hydroxylase: from Discovery to Cloning. M. Naoi & S. H. Parvez, Eds.: 253–281. VSP Press. Utrecht , The Netherlands . Google Scholar 43 Von Euler, U. S., C. Franksson & J. Hellstrom. 1954. Adrenaline and noradrenaline output in urine after unilateral and bilateral adrenalectomy in man. Acta Physiol. Scand. 31: 1–5. 10.1111/j.1748-1716.1954.tb01107.x CASPubMedWeb of Science®Google Scholar 44 Dailey, J. W. & T. C. Westfall. 1978. Effect of adrenalectomy and adrenal steroids on norepinephrine synthesis and monoamine oxidase activity. Eur. J. Pharmacol. 48: 383–391. 10.1016/0014-2999(78)90165-6 CASPubMedWeb of Science®Google Scholar 45 Kvetňanský, R., V. K. Weise & I. J. Kopin. 1979. The origin of plasma epinephrine, norepinephrine and dopamine levels in stressed rats. In Catecholamines: Basic and Clinical Frontiers. E. Usdin, I. J. Kopin & J. Barchas, Eds. 1: 684–686. Pergamon Press. New York , NY . 10.1016/B978-1-4832-8363-0.50208-1 Google Scholar 46 Udelsman, R., D. S. Goldstein, D. L. Loriaux & G. P. Chrousos. 1987. Catecholamine-glucocorticoid interactions during surgical stress. J. Surg. Res. 43: 539–545. 10.1016/0022-4804(87)90128-4 CASPubMedWeb of Science®Google Scholar 47 Picotti, G. B., M. O. Carruba, C. Ravazzani, A. M. Cesura, M. D. Galva & M. Da Prada. 1981. Plasma catecholamines in rats exposed to cold: effects of ganglionic and adrenoreceptor blockade. Eur. J. Pharmacol. 69: 321–329. 10.1016/0014-2999(81)90478-7 CASPubMedWeb of Science®Google Scholar 48 Landsberg, L. & J. Axelrod. 1968. Influence of pituitary, thyroid, and adrenal hormones on norepinephrine turnover and metabolism in the rat heart. Circ. Res. 22: 559–571. 10.1161/01.RES.22.5.559 CASPubMedWeb of Science®Google Scholar 49 Westfall, T. C. & H. Osada. 1969. Influence of adrenalectomy on the synthesis of norepinephrine in the rat heart. J. Pharmacol. Exp. Ther. 167: 300–308. CASPubMedWeb of Science®Google Scholar 50 Westfall, T. C. & T. C. Lewis. 1973. Effect of aminoglutethimide on norepinephrine turnover in rat heart. Proc. Soc. Exp. Biol. Med. 142: 1295–1300. 10.3181/00379727-142-37227 CASPubMedWeb of Science®Google Scholar 51 Kvetňanský, R., I. Armando, V. K. Weise, C. Holmes, K. Fukuhara, A. Deka-Starosta, I. J. Kopin & D. S. Goldstein. 1992. Plasma DOPA responses during stress: dependence on sympathoneural activity and tyrosine hydroxylation. J. Pharmacol. Exp. Ther. 261: 899–909. CASPubMedWeb of Science®Google Scholar 52 Kvetňanský, R., D. S. Goldstein, V. K. Weise, C. Holmes, K. Szemeredi, G. Bagdy & I. J. Kopin. 1992. Effects of handling or immobilization on plasma levels of 3,4 dihydroxyphenylalanine, catecholamines, and metabolites in rats. J. Neurochem. 58: 2296–2302. 10.1111/j.1471-4159.1992.tb10977.x CASPubMedWeb of Science®Google Scholar 53 Eisenhofer, G., D. S. Goldstein, T. G. Ropchak, H. Q. Nguyen, H. R. Keiser & I. J. Kopin. 1988. Source and physiological significance of plasma 3,4-dihydroxyphenylglycol and 3-methoxy-4-hydroxyphenylglycol. J. Auton. Nerv. Sys. 24: 1–14. 10.1016/0165-1838(88)90130-0 CASPubMedWeb of Science®Google Scholar 54 Goldstein, D. S., G. Eisenhofer, R. Stull, C. J. Folio, H. R. Keiser & I. J. Kopin. 1988. Plasma dihydroxyphenylglycol and the intraneuronal disposition of norepinephrine in humans. J. Clin. Invest. 81: 213–220. 10.1172/JCI113298 CASPubMedWeb of Science®Google Scholar 55 Nagatsu, T., M. Levitt & S. Udenfriend. 1964. Tyrosine hydroxylase: the initial step in norepinephrine biosynthesis. J. Biol. Chem. 239: 2910–2917. 10.1016/S0021-9258(18)93832-9 CASPubMedWeb of Science®Google Scholar 56 Levitt, M., S. Spector, A. Sjoerdsma & S. Udenfriend. 1965. Elucidation of the rate limiting step in norepinephrine biosynthesis in the perfused guinea-pig heart. J. Pharmacol. Exp. Ther. 148: 1–8. CASPubMedWeb of Science®Google Scholar 57 Kvetňanský, R., V. K. Weise & I. J. Kopin. 1970. Elevation of adrenal tyrosine hydroxylase and phenylethanolamine N-methyltransferase by repeated immobilization of rats. Endocrinology 87: 744–749. 10.1210/endo-87-4-744 CASPubMedWeb of Science®Google Scholar 58 Kvetňanský, R., G. P. Gewirtz, V. K. Weise & I. J. Kopin. 1971. Enhanced synthesis of adrenal dopamine-β-hydroxylase induced by repeated immobilization in rats. Mol. Pharmacol. 7: 81–86. CASPubMedWeb of Science®Google Scholar 59 Thoenen, H. 1970. Induction of tyrosine hydroxylase in peripheral and central adrenergic neurons by cold-exposure in rats. Nature 228: 861–862. 10.1038/228861a0 CASPubMedWeb of Science®Google Scholar 60 Thoenen, H. 1972. Comparison between the effect of neuronal activity and nerve growth factor on the enzymes involved in the synthesis of norepinephrine. Pharmacol. Rev. 24: 255–267. CASPubMedWeb of Science®Google Scholar 61 Otten, U., U. Paravicini, F. Oesch & H. Thoenen. 1973. Time requirement for the single step of transsynaptic induction of tyrosine hydroxylase in the peripheral sympathetic nervous system. Naunyn-Schmiedeberg's Arch. Pharmacol. 280: 117–127. 10.1007/BF00499173 CASWeb of Science®Google Scholar 62 Kvetňanský, R., V. K. Weise, G. P. Gewirtz & I. J. Kopin. 1971. Synthesis of adrenal catecholamines in rats during and after immobilization stress. Endocrinology 89: 46–49. 10.1210/endo-89-1-46 CASPubMedWeb of Science®Google Scholar 63 Kvetňanský, R., G. P. Gewirtz, V. K. Weise & I. J. Kopin. 1971. Catecholaminesynthesizing enzymes in the rat adrenal gland during exposure to cold. Am. J. Physiol. 220: 928–931. CASPubMedWeb of Science®Google Scholar 64 Chuang, D. & E. Costa. 1974. Biosynthesis of tyrosine hydroxylase in rat adrenal medulla after exposure in cold. Proc. Natl. Acad. Sci. USA 71: 4570–4574. 10.1073/pnas.71.11.4570 CASPubMedWeb of Science®Google Scholar 65 Hoeldtke, R., T. Lloyd & S. Kaufman. 1974. An immunochemical study of the induction of tyrosine hydroxylase in rat adrenal glands. Biochem. Biophys. Res. Commun. 57: 1045–1053. 10.1016/0006-291X(74)90802-X CASPubMedWeb of Science®Google Scholar 66 Chuang, D., G. Zsilla & E. Costa. 1975. Turnover rate of tyrosine hydroxylase during trans-synaptic induction. Mol. Pharmacol. 11: 784–794. CASPubMedWeb of Science®Google Scholar 67 Fluharty, S. J., G. L. Snyder, M. J. Zigmond & E. M. Stricker. 1985. Tyrosine hydroxylase activity and catecholamine biosynthesis in the adrenal medulla of rats during stress. J. Pharmacol. Exp. Ther. 233: 32–38. CASPubMedWeb of Science®Google Scholar 68 Stachowiak, M. K., R. Sebbane, E. M. Stricker, M. J. Zigmond & B. B. Kaplan. 1985. Effect of chronic cold exposure on tyrosine hydroxylase mRNA in rat adrenal gland. Brain Res. 359: 356–359. 10.1016/0006-8993(85)91450-7 CASPubMedWeb of Science®Google Scholar 69 Stachowiak, M. K., S. J. Fluharty, E. M. Stricker, M. J. Zigmond & B. B. Kaplan. 1986. Molecular adaptations in catecholamine biosynthesis induced by cold stress and sympathectomy. J. Neurosci. Res. 16: 13–24. 10.1002/jnr.490160104 CASPubMedWeb of Science®Google Scholar 70 Tank, A. W., E. J. Lewis, D. M. Chikaraichi & N. Weiner. 1985. Elevation of RNA coding for tyrosine hydroxylase in rat adrenal gland by reserpine treatment and exposure to cold. J. Neurochem. 45: 1030–1033. 10.1111/j.1471-4159.1985.tb05519.x CASPubMedWeb of Science®Google Scholar 71 Baruchin, A. M., E. P. Weisberg, L. L. Miner, D. Ennis, L. K. Nisenbaum, E. Naylor, E. M. Stricker, M. J. Zigmond & B. B. Kaplan. 1990. Effects of cold exposure on rat adrenal tyrosine hydroxylase: an analysis of RNA, protein, enzyme activity and cofactor levels. J. Neufochem. 54: 1769–1775. 10.1111/j.1471-4159.1990.tb01232.x CASPubMedWeb of Science®Google Scholar 72 Baruchin, A., R. R. Vollmer, L. L. Miner, S. L. Sell, E. M. Stricker & B. B. Kaplan. 1993. Cold-induced increases in phenylethanolamine N-methyltransferase (PNMT) mRNA are mediated by non-cholinergic mechanisms in the rat adrenal gland. Neurochem. Res. 18: 759–766. 10.1007/BF00966770 CASPubMedWeb of Science®Google Scholar 73 McMahon, A., R. Kvetňanský, K. Fukuhara, V. K. Weise, I. J. Kopin & E. L. Sabban. 1992. Regulation of tyrosine hydroxylase and dopamine-β-hydroxylase mRNA levels in rat adrenals by a single and repeated immobilization stress. J. Neurochem. 58: 2124–2130. 10.1111/j.1471-4159.1992.tb10954.x CASPubMedWeb of Science®Google Scholar 74 Sabban, E. L., R. Kvetňanský, A. McMahon, K. Fukuhara, E. Kilbourne & I. J. Kopin. 1992. Stressors regulate mRNA levels of tyrosine hydroxylase and dopamine-β-hydroxylase in adrenals in vivo and in PC12 cells. In Stress: Neuroendocrine and Molecular Approaches. R. Kvetňanský, R. McCarty & J. Axelrod, Eds.: 325–335. Gordon and Breach Sci. Publ. New York , NY . Web of Science®Google Scholar 75 Nankova, B., R. Kvetňanský, A. McMahon, E. Viskupič, B. Hiremagalur, G. Frankle, K. Fukuhara, I. J. Kopin & E. L. Sabban. 1994. Induction of tyrosine hydroxylase gene expression by a non-neuronal non-pituitary mediated mechanism in immobilization stress. Proc. Natl. Acad. Sci. USA 91: 5937–5941. 10.1073/pnas.91.13.5937 CASPubMedWeb of Science®Google Scholar 76 Weisberg, E. P., A. Baruchin, M. K. Stachowiak, E. M. Stricker, M. J. Zigmond & B. B. Kaplan. 1989. Isolation of rat adrenal cDNA clone encoding phenylethanolamine N-methyltransferase and cold-induced alterations in adrenal PNMT mRNA and protein. Mol. Brain Res. 6: 159–166. 10.1016/0169-328X(89)90050-8 CASPubMedWeb of Science®Google Scholar 77 Viskupič, E., R. Kvetňanský, E. L. Sabban, K. Fukuhara, V. K. Weise, I. J. Kopin & J. P. Schwartz. 1994. Increase in rat adrenal phenylethanolamine N-methyltransferase mRNA level caused by immobilization stress depends on intact pituitary-adrenocortical axis. J. Neurochem. 63: 808–814. 10.1046/j.1471-4159.1994.63030808.x CASPubMedWeb of Science®Google Scholar 78 McEwen, B. S., E. R. DEKloet & W. Rostene. 1986. Adrenal steroid receptors and actions in the nervous system. Physiol. Rev. 66: 1121–1188. 10.1152/physrev.1986.66.4.1121 CASPubMedWeb of Science®Google Scholar 79 Udelsman, R. & N. J. Holbrook. 1994. Endocrine and molecular responses to surgical stress. Curr. Probl. Surg. 31: 653–728. 10.1016/0011-3840(94)90057-4 CASPubMedWeb of Science®Google Scholar 80 Stachowiak, M. K., R. J. Rigual, P. H. K. Lee, O. H. Viveros & J. S. Hong. 1988. Regulation of tyrosine hydroxylase and phenylethanolamine N-methyltransferase mRNA levels in the sympathoadrenal system by the pituitary-adrenocortical axis. Mol. Brain Res. 3: 275–286. 10.1016/0169-328X(88)90050-2 CASWeb of Science®Google Scholar 81 Jiang, W., R. Uht & M. C. Bohn. 1989. Regulation of phenylethanolamine N-methyltransferase mRNA in the rat adrenal medulla by corticosterone. Int. J. Dev. Neurosci. 7: 513–520. 10.1016/0736-5748(89)90010-5 CASPubMedWeb of Science®Google Scholar 82 Kvetňanský, R. & L. Mikulaj. 1970. Adrenal and urinary catecholamines in rat during adaptation to repeated immobilization stress. Endocrinology 87: 738–743. 10.1210/endo-87-4-738 CASPubMedWeb of Science®Google Scholar 83 Kvetňanský, R., C. Sun, C. R. Lake, N. B. Thoa, T. Torda & I. J. Kopin. 1978. Effect of handling and forced immobilization on rat plasma levels of epinephrine, norepinephrine and dopamine-β-hydroxylase. Endocrinology 103: 1868–1874. 10.1210/endo-103-5-1868 CASPubMedWeb of Science®Google Scholar 84 Lenders, J. W. M., R. Kvetňanský, K. Pacák, D. S. Goldstein, I. J. Kopin & G. Eisenhofer. 1993. Extraneuronal metabolism of endogenous and exogenous norepinephrine and epinephrine in rats. J. Pharmacol. Exp. Ther. 266: 288–293. CASPubMedWeb of Science®Google Scholar 85 Goldstein, D. S., R. Udelsman, G. Eisenhofer, H. R. Keiser & I. J. Kopin. 1987. Neuronal source of plasma dihydroxyphenylalanine. J. Clin. Endocrinol. Metàb. 64: 856–861. 10.1210/jcem-64-4-856 CASPubMedWeb of Science®Google Scholar 86 Eisenhofer, G., T. Ropchak, H. Nguyen, H. R. Keiser, I. J. Kopin & D. S. Goldstein. 1988. Source and physiological significance of plasma 3,4-dihydroxyphenylalanine in the rat. J. Neurochem. 51: 1204–1213. 10.1111/j.1471-4159.1988.tb03088.x CASPubMedWeb of Science®Google Scholar 87 Parvez, H. & S. Parvez. 1972. Control of catecholamine release and degradation by the glucocorticoids. Experientia 28: 1330–1332. 10.1007/BF01965327 CASPubMedWeb of Science®Google Scholar 88 Parvez, S., H. Parvez & J. Roffi. 1974. Hypophyseal-adrenocortical role in urinary excretion of epinephrine and norepinephrine in hypophysectomized and adrenalectomized rats. Endocrinology 94: 1054–1059. 10.1210/endo-94-4-1054 CASPubMedWeb of Science®Google Scholar 89 Ismahan, G., H. Parvez, S. Parvez & M. B. H. Youdim. 1977. Comparative effects of hypophysectomy and adrenalectomy upon plasma and adrenal monoamines in pregnant and nonpregnant rats. Br. J. Pharmacol. 60: 385–391. 10.1111/j.1476-5381.1977.tb07513.x CASPubMedWeb of Science®Google Scholar 90 Kopin, I. J. 1985. Catecholamine metabolism: basic aspects and clinical significance. Pharmacol. Rev. 37: 333–364. CASPubMedWeb of Science®Google Scholar 91 Gothert, M. 1981. ACTH1.24 increases stimulation-evoked noradrenaline release from sympathetic nerves by acting on presynaptic ACTH receptors. Eur. J. Pharmacol. 76: 295–296. 10.1016/0014-2999(81)90518-5 CASPubMedWeb of Science®Google Scholar 92 Makara, G. B., E. Stark & M. Palkovits. 1980. Reevaluation of the pituitary-adrenal response to ether in rats with various cuts around the medial basal hypothalamus. Neuroendocrinology 30: 38–44. 10.1159/000122972 CASPubMedWeb of Science®Google Scholar 93 Kvetňanský, R., M. Dobrakovova, D. Jezova, Z. Oprsalova, B. Lichardus & G. Makara. 1989. Hypothalamic regulation of plasma catecholamine levels during stress: effect of vasopressin and CRF. In Stress: Neurochemical and Humoral Mechanisms. G. R. Loon, R. Kvetňanský, R. McCarty & J. Axelrod, Eds. 2: 549–570. Gordon and Breach Sci Publ. New York , NY . Google Scholar 94 Jezova, D., R. Kvetňanský, F. J. H. Tilders & G. B. Makara. 1989. Interaction of circulating catecholamines, CRF and AVP in the control of ACTH release during stress. In Stress: Neurochemical and Humoral Mechanisms. G. R. Loon, R. Kvetňanský, R. McCarty & J. Axelrod, Eds. 1: 409–424. Gordon and Breach Sci Publ. New York , NY . Google Scholar 95 Harfstrand, A., K. Fuxe, A. Cintra, L. F. Agnati, I. Zini, A-C. Wikstrom, S. Okret, Z-Y. Yu, M. Goldstein, H. Steinbusch, A. Verhofstad & J-A. Gustafsson. 1986. Glucocorticoid receptor immunoreactivity in monoaminergic neurons of rat brain. Proc. Natl. Acad. Sci. USA 83: 9779–9783. 10.1073/pnas.83.24.9779 PubMedWeb of Science®Google Scholar 96 Sawchenko, P. E. & M. C. Bohǹ. 1989. Glucocorticoid receptor immunoreactivity in C1, C2 and C3 adrenergic neurons that project to the hypothalamus or to spinal cord in the rat. J. Comp. Neurol. 205: 107–116. 10.1002/cne.902850109 Web of Science®Google Scholar 97 Markey, K. A. & P. Y. Sze. 1984. Influence of ACTH on tyrosine hydroxylase activity in the locus coeruleus of mouse brain. Neuroendocrinology 38: 269–275. 10.1159/000123902 CASPubMedWeb of Science®Google Scholar 98 Smith, M. A., L. S. Brady, J. Glowa, P. W. Gold & M. Herkenham. 1990. Effects of stress and adrenalectomy on tyrosine hydroxylase mRNA levels in the locus ceruleus by in situ hybridization. Brain. Res. 544: 26–32. 10.1016/0006-8993(91)90881-U PubMedWeb of Science®Google Scholar 99 Sawchenko, P. E. 1988. Effects of catecholamine-depleting medullary knife cuts on corticotropin-releasing factor and vasopressin immunoreactivity in the hypothalamus of normal and steroid manipulated rats. Neuroendocrinology 48: 459–470. 10.1159/000125050 CASPubMedWeb of Science®Google Scholar 100 Weidenfeld, J. & S. Feldman. 1991. Effect of hypothalamic norepinephrine depletion on median eminence CRF-41 content and serum ACTH in control and adrenalectomized rats. Brain Res. 542: 201–204. 10.1016/0006-8993(91)91567-K CASPubMedWeb of Science®Google Scholar 101 Komesaroff, P. A. & J. W. Funder. 1994. Differential glucocorticoid effects on catecholamine responses to stress. Am. J. Physiol. 266: E118–E128. 10.1152/ajpendo.1994.266.1.E118 CASPubMedWeb of Science®Google Scholar 102 Stene, M., N. Panagiotis, M. L. Tuck, J. R. Sowers, D. Mayes & G. Berg. 1980. Plasma norepinephrine levels are influenced by sodium intake, glucocorticoid administration, and circadian changes in normal man. J. Clin. Endocrinol. Metab. 51: 1340–1345. 10.1210/jcem-51-6-1340 CASPubMedWeb of Science®Google Scholar 103 Barber, A. E., S. M. Coyle, M. A. Marano, E. Fischer, S. E. Calvano, Y. Fong, L. L. Moldawer & S. F. Lowry. 1993. Glucocorticoid therapy alters hormonal and cytokine responses to endotoxin in man. J. Immunol. 150: 1999–2006. 10.4049/jimmunol.150.5.1999 CASPubMedWeb of Science®Google Scholar 104 Roberts-Thomson, I. C., J. R. Jonsson, P. R. Panall, W. B. Taylor & D. B. Frewin. 1991. Differential effect of glucocorticoids on abdominal pain induced by morphine. Pain 46: 133–137. 10.1016/0304-3959(91)90067-8 CASPubMedWeb of Science®Google Scholar 105 Lenders, J. W. M., A. Golczynska & D. S. Goldstein. 1995. Glucocorticoids and presynaptic alpha2-adrenoceptor function in humans. J. Clin. Endocrinol. Metab. (In press.) 10.1210/jc.80.6.1804 PubMedWeb of Science®Google Scholar 106 Nakagawa, R., T. Masatoshi, Y. Kohno, Y. Ida, K. Imori & N. Nagasaki. 1983. Glucocorticoids attenuates increases in rat brain noradrenaline turnover induced by intense stress. Kurume Med. J. 30: 45–50. 10.2739/kurumemedj.30.45 CASPubMedGoogle Scholar 107 Jhanwar-Uniyal, M., K. J. Renner, M. T. Bailo, V. N. Luine & S. F. Leibowttz. 1989. Corticosterone-dependent alterations on utilization of catecholamines in discrete areas of rat brain. Brain. Res. 500: 247–255. 10.1016/0006-8993(89)90320-X CASPubMedWeb of Science®Google Scholar 108 Vetrugno, G. C., J. Lachuer, C. Perego, E. Miranda, M. G. De Simoni & M. Tappaz. 1993. Lack of glucocorticoids sustains the stress-induced release of noradrenaline in the anterior hypothalamus. Neuroendocrinology 57: 835–842. 10.1159/000126442 CASPubMedWeb of Science®Google Scholar 109 Paull, W. K. & F. P. Gibbs. 1983. The corticotropin releasing factor neurosecretory system in intact, adrenalectomized, and adrenalectomized-dexamethasone treated rats. Histochemistry 78: 303–316. 10.1007/BF00496618 CASPubMedWeb of Science®Google Scholar 110 Sawchenko, P. E., L. W. Swanson & W. Vale. 1984. Co-expression of corticotropin-releasing factor and vasopressin immunoreactivity in parvocellular neurosecretory neurons of the adrenalectomized rat. Proc. Natl. Acad. Sci. USA 81: 1883–1887. 10.1073/pnas.81.6.1883 CASPubMedWeb of Science®Google Scholar 111 Young, W. S. III, E. Mezey & R. E. Seigel. 1986. Quantitative in situ hybridization histochemistry reveals increased levels of corticotropin-releasing factor mRNA after adrenalectomy in rats. Neurosci. Lett. 70: 198–203. 10.1016/0304-3940(86)90463-5 CASPubMedWeb of Science®Google Scholar 112 Frim, D. M., B. G. Robinson, K. B. Pasieka & J. A. Majzoub. 1990. Differential regulation of corticotropin-releasing hormone mRNA in rat brain. Am. J. Physiol. 258: E686–E692. 10.1152/ajpendo.1990.258.4.E686 CASPubMedWeb of Science®Google Scholar 113 Swanson, L. W., P. E. Sawchenko, S. J. Wiegand & J. L. Price. 1980. Separate neurons in the paraventricular nucleus project to the median eminence and to the medulla or spinal cord. Brain Res. 198: 190–195. 10.1016/0006-8993(80)90354-6 CASPubMedWeb of Science®Google Scholar 114 Reul, M. H. M. & E. R. De Kloet. 1985. Two receptor systems for corticosterone in rat brain: microdistribution and differential occupation. Endocrinology 117: 2505–2511. 10.1210/endo-117-6-2505 CASPubMedWeb of Science®Google Scholar 115 Jacobson, L. & R. Sapolsky. 1993. Augmented ACTH responses to stress in adrenalectomized rats replaced with constant physiological levels of corticosterone are partially normalized by acute increases in corticosterone. Neuroendocrinology 58: 420–429. 10.1159/000126571 CASPubMedWeb of Science®Google Scholar 116 Sapolsky, R. M., L. C. Krey & B. S. McEwen. 1984. Stress down-regulates corticosterone receptors in a site-specific manner in the brain. Endocrinology 114: 287–292. 10.1210/endo-114-1-287 CASPubMedWeb of Science®Google Scholar 117 Sapolsky, R. M. & P. Plotsky. 1990. Hypercortisolism and its possible neural bases. Biol. Psychiatry 27: 937–52. 10.1016/0006-3223(90)90032-W CASPubMedWeb of Science®Google Scholar 118 Mamalaki, E., R. Kvetňanský, L. S. Brady, P. W. Gold & M. Herkenham. 1992. Repeated immobilization stress alters tyrosine hydroxylase, corticotropin-releasing hormone and corticosteroid receptor messenger ribonucleic acid levels in rat brain. J. Neuroendocrinol. 4: 689–699. 10.1111/j.1365-2826.1992.tb00220.x CASWeb of Science®Google Scholar 119 Dekloet, R. E., M. S. Oitzl & B. Schobitz. 1994. Cytokines and the brain corticosteroid receptor balance: relevance to pathophysiology of neuroendocrine-immune communication. Psychoneuroendocrinology 19: 121–134. 10.1016/0306-4530(94)90002-7 CASPubMedWeb of Science®Google Scholar 120 Derijk, R. & F. Berkenbosch. 1994. Supressive and permissive actions of glucocorticoids: a way to control innate immunity and to facilitate specificity of adaptive immunity? In Endocrinol. Metab. Prog. Res. Clin. Pract. Ch. J. Grossman, Ed: 7: 73–95. Springer Verlag. New York , NY . Google Scholar 121 Kvetňanský, R., G. P. Gewirtz, V. K. Weise & I. J. Kopin. 1970. Effect of hypophysectomy on immobilization-induced elevation of tyrosine hydroxylase and phenylethanolamine N-methyltransferase in rat adrenal. Endocrinology 87: 1323–1329. 10.1210/endo-87-6-1323 CASPubMedGoogle Scholar 122 Gewirtz, G. P., R. Kvetňanský, V. K. Weise & I. J. Kopin. 1971. Effect of hypophysectomy on adrenal dopamine-β-hydroxylase activity in the rat. Mol. Pharmacol. 7: 163–168. CASPubMedWeb of Science®Google Scholar 123 Weinshilboum, R. M. & J. Axelrod. 1970. Dopamine-β-hydroxylase activity in the rat after hypophysectomy. Endocrinology 87: 894–900. 10.1210/endo-87-5-894 CASPubMedWeb of Science®Google Scholar 124 Palkovits, M., M. J. Brownstein, V. K. Weise & I. J. Kopin. 1984. Effect of central nervous system neurons on adrenal catecholamines under basal and stress conditions. In Stress: the Role of Catecholamines and Other Neurotransmitters. E. Usdin, R. Kvetňanský & J. Axelrod, Eds. 2: 609–616. Gordon and Breach Sci. Publishers. New York , NY . Google Scholar 125 Miner, L. L., A. Baruchin & B. B. Kaplan. 1992. Transsynaptic modulation of rat adrenal tyrosine hydroxylase gene expression during cold stress. In Stress: Neuroendocrine and Molecular Approaches. R. Kvetňanský, R. McCarty & J. Axelrod, Eds. 1: 313–324. Gordon and Breach Sci. Publishers. New York , NY . Web of Science®Google Scholar 126 Lewis, E. J., C. A. Harrington & D. M. Chikaraichi. 1987. Transcriptional regulation of the tyrosine hydroxylase gene by glucocorticoid and cyclic AMP. Proc. Natl. Acad. Sci. USA 84: 3550–3554. 10.1073/pnas.84.11.3550 CASPubMedWeb of Science®Google Scholar 127 McMahon, A. & E. L. Sabban. 1992. Regulation of expression of dopamine-β-hydroxylase in PC12 cells by glucocorticoids and cAMP analogs. J. Neurochem. 59: 2040–2047. 10.1111/j.1471-4159.1992.tb10092.x CASPubMedWeb of Science®Google Scholar 128 Wan, D. C-C. & B. G. Livett. 1989. Induction of phenylethanolamine N-methyltransferase mRNA expression by glucocorticoids in cultured bovine adrenal chromaffin cells. Eur. J. Pharmacol. 172: 107–115. 10.1016/0922-4106(89)90002-3 CASPubMedWeb of Science®Google Scholar 129 Stachowiak, M. K., J. S. Hong & O. H. Viveros. 1990. Coordinate and differential regulation of phenylethanolamine N-methyltransferase, tyrosine hydroxylase and proenkephalin mRNAs by neural and hormonal mechanisms in cultured bovine adrenal medullary cells. Brain Res. 510: 277–288. 10.1016/0006-8993(90)91378-T CASPubMedWeb of Science®Google Scholar 130 Carroll, J. M., M. J. Evinger, H. M. Goodman & T. H. Joh. 1991. Differential and coordinate regulation of TH and PNMT mRNAs in chromaffin cell cultures by second messenger system activation and steroid treatment. J. Mol. Neurosci. 3: 75–83. 10.1007/BF02885528 CASPubMedWeb of Science®Google Scholar 131 Bohn, M. C. 1992. Differential regulation of phenylethanolamine N-methyltransferase in adrenal medulla and medulla oblongata by glucocorticoids. In Stress: Neuroendocrine and Molecular Approaches. R. Kvetňanský, R. McCarty & J. Axelrod, Eds. 1: 337–350. Gordon and Breach Sci. Publishers. New York , NY . Google Scholar 132 Kvetňanský, R., B. B. Nankova, E. Viskupič, B. Hiremagalur, I. Vietor, M. Rusnak, I. J. Kopin & E. L. Sabban. 1994. Regulation of tyrosine hydroxylase and PNMT gene expression induced by a single immobilization stress: effect of hypophysectomy and ACTH. Soc. Neurosci. Abstr. (No. 15.6) 20 (Part 1): 17. Google Scholar 133 Wong, D. L., A. Lesage, B. Siddall & J. W. Funder. 1992. Glucocorticoid regulation of phenylethanolamine N-methyltransferase in vivo. FASEB J. 6: 3310–3315. 10.1096/fasebj.6.14.1426768 CASPubMedWeb of Science®Google Scholar 134 Ross, E. M., M. J. Evinger, S. E. Hyman, J. M. Carroll, L. Mucke, M. Comb, D. J. Reis, T. H. Joh & H. M. Goodman. 1990. Identification of a functional glucocorticoid response element in the phenylethanolamine N-methyltransferase promoter using fusion genes introduced into chromaffin cells in primary culture. J. Neurosci. 10: 520–530. 10.1523/JNEUROSCI.10-02-00520.1990 CASPubMedWeb of Science®Google Scholar 135 Batter, D. K., S. R. D'Mello, L. M. Turzai, H. B. Hughes, III, A. E. Gioio & B. B. Kaplan. 1988. The complete nucleotide sequence and structure of the gene encoding bovine phenylethanolamine N-methyltransferase. J. Neurosci. Res. 19: 367–376. 10.1002/jnr.490190313 CASPubMedWeb of Science®Google Scholar 136 Baetge, E. E., R. R. Behringer, A. Messing, R. L. Brinster & R. D. Palmiter. 1988. Transgenic mice express the human phenylethanolamine N-methyltransferase gene in adrenal medulla and retina. Proc. Natl. Acad. Sci. USA 85: 3648–3652. 10.1073/pnas.85.10.3648 CASPubMedWeb of Science®Google Scholar 137 Wurtman, R. J., E. P. Noble & J. Axelrod. 1967. Inhibition of enzymatic synthesis of epinephrine by low doses of glucocorticoids. Endocrinology 80: 825–828. 10.1210/endo-80-5-825 CASPubMedWeb of Science®Google Scholar 138 Betito, K., J. B. Mitchell, S. Bhatnagar, P. Boksa & M. J. Meaney. 1994. Regulation of the adrenomedullary catecholaminergic system after mild, acute stress. Am. J. Physiol. 263: R212–R220. Google Scholar Citing Literature Volume771, Issue1Stress: Basic Mechanisms and Clinical ImplicationsDecember 1995Pages 131-158 ReferencesRelatedInformation

Referência(s)