Capítulo de livro Revisado por pares

Dispersal Mechanisms of Deep-Sea Hydrothermal Vent Fauna

2011; American Geophysical Union; Linguagem: Inglês

10.1029/gm091p0408

ISSN

2328-8779

Autores

Lauren S. Mullineaux, Scott C. France,

Tópico(s)

Isotope Analysis in Ecology

Resumo

Dispersal Mechanisms of Deep-Sea Hydrothermal Vent Fauna Lauren S. Mullineaux, Lauren S. Mullineaux Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543Search for more papers by this authorScott C. France, Scott C. France Department of Zoology, University of New Hampshire, Durham, N.H. 03824Search for more papers by this author Lauren S. Mullineaux, Lauren S. Mullineaux Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543Search for more papers by this authorScott C. France, Scott C. France Department of Zoology, University of New Hampshire, Durham, N.H. 03824Search for more papers by this author Book Editor(s):Susan E. Humphris, Susan E. HumphrisSearch for more papers by this authorRobert A. Zierenberg, Robert A. ZierenbergSearch for more papers by this authorLauren S. Mullineaux, Lauren S. MullineauxSearch for more papers by this authorRichard E. Thomson, Richard E. ThomsonSearch for more papers by this author First published: 01 January 1995 https://doi.org/10.1029/GM091p0408Citations: 15Book Series:Geophysical Monograph Series AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary This chapter contains sections titled: Introduction Dispersal Recruitment Population Genetics Summary References S. E. Allen, R. E. Thomson, Bonorn-trapped subinertial motions over midocean ridges in a stratified rotating field, J. Phys. Oceanogr., 23, 566–581, 1993. 10.1175/1520-0485(1993)023 2.0.CO;2 Web of Science®Google Scholar S. Anderson-Fontana, H. T. Rossby, S. Riser, RAFOS floats in the southeastern Pacific Ocean 1987–1989, University of Rhode Island, Graduate School of Oceanography Technical Report, 92-1, 121–1992. Google Scholar L. Anni, D. Hebert, N. Oakley, J. F. Price, P. L. Richardson, H. T. Rossby, B. Ruddick, Two years in the life of a Mediterranean salt lens, J. Phys. Oceanogr., 19, 354–370, 1989. 10.1175/1520-0485(1989)019 2.0.CO;2 Web of Science®Google Scholar E. T. Baker, G. J. Massoth, Characteristics of hydrothermal plumes from two vent fields on the Juan de Fuca Ridge, northeast Pacific Ocean, Earth Planet. Sci. Lett., 85, 59–73, 1987. 10.1016/0012-821X(87)90021-5 CASWeb of Science®Google Scholar E. T. Baker, J. W. Lavelle, R. A. Feely, G. J. Massoth, S. L. Walker, Episodic venting of hydrothermal fluids from the Juan de Fuca Ridge, J. Geophys. Res., 94, 9237–9250, 1989. 10.1029/JB094iB07p09237 Web of Science®Google Scholar E. T. Baker, R. A. Feely, M. J. Mottl, and J. E. Lupton, Hydrothermal plumes along the East Pacific Rise, 8°40′ to 11°50′N: Plume distribution and relationship to the apparent magmatic budget, Earth Planet. Sci. Lett., in press. Google Scholar C. J. Berg, C. L. Van Dover, Benthopelagic macro zooplankton communities at and near deep-sea hydrothennal vents in the eastern Pacific Ocean and the Gulf of California, Deep-Sea Res., 43, 379–401, 1987. 10.1016/0198-0149(87)90144-0 Web of Science®Google Scholar M. B. Black, R. A. Lutz, R. C. Vrijenhoek, Gene flow among vestimentiferan tube worm (Riftia pachyptila) populations from hydrothermal vents of the eastern Pacific, Mar. Biol., 120, 33–39, 1994. Web of Science®Google Scholar A. Bucklin, Allozymic variability of Riftia pachyptila populations from the Galapagos Rift and 21°N hydrothermal vents, Deep-Sea Res., 35, 1759–1768, 1988. 10.1016/0198-0149(88)90048-9 Web of Science®Google Scholar B. J. Burd, and R. E. Thomson, Hydrothermal venting at Endeavour Ridge: Effect on zooplankton biomass throughout the water column, Deep-Sea Res. (in press). Google Scholar C. A. Butman, J. P. Grassle, E. J. Buskey, Horizontal swimming and gravitational sinking of Capitella sp. I (Annelida: Polychaeta) larvae: Implications for settlement, Ophelia, 29, 43–57, 1988. 10.1080/00785326.1988.10430818 Web of Science®Google Scholar G. A. Cannon, D. J. Pasbinski, Circulation near Axial Seamount, J. Geophys. Res., 95, 12,823–12,828, 1990. 10.1029/JB095iB08p12823 Web of Science®Google Scholar G. A. Cannon, D. J. Pashinski, M. R. Lemon, Middepth flow near hydrothermal venting sites on the southern Juan de Fuca ridge, J. Geophys. Res., 96, 12,815–12,831, 1991. 10.1029/91JC01023 Web of Science®Google Scholar G. A. Cannon, D. J. Pashinski, M. R. Lemon, Hydrothermal effects west of the Juan de Fuca Ridge, Deep. Sea Res., 40, 1447–1457, 1993. 10.1016/0967-0637(93)90122-J Web of Science®Google Scholar S. C. Cary, H. Felbeck, N. D. Holland, Observations on the reproductive biology of the hydrothermal vent tube worm Riftia pachyptila, Mar. Ecol. Prog. Ser., 52, 89–94, 1989. 10.3354/meps052089 Web of Science®Google Scholar S. C. Cary, W. Warren, E. Anderson, S. J. Giovannoni, Identification and localization of bacterial endosymbionls in hydrothermal vent taxa with symbiont-specific polymerase chain reaction amplification and in situ hybridization techniques, Mol. Mar. Biol. Biotech., 2, 51–62, 1993. CASPubMedGoogle Scholar F. S. Chia, J. Buckland-Nicks, C. M. Young, Locomotion of marine invertebrate larvae: A review, Can. J. Zool., 62, 1205–1222, 1984. 10.1139/z84-176 Web of Science®Google Scholar D. R. Converse, H. D. Holland, J. M. Edmond, Flow rates in the axial hot springs of the East Pacific Rise (21°N): Implications for the heat budget and the formation of massive sulfide deposits, Earth Plan. Sci. Letters, 69, 159–175, 1984. 10.1016/0012-821X(84)90080-3 Web of Science®Google Scholar K. Crane, The distribution of geothermal fields along the midocean ridge: An overview, Bull. Biol. Soc. Wash., 6, 3–18, 1985. Google Scholar D. Desbruyères, L. Laubier, Primary consumers from hydrothermal vents animal communities, Hydrothermal Processes at Seafloor Spreading Centers, P. A. Rona, et al., 711–734, Plenum Press, New York, 1983. 10.1007/978-1-4899-0402-7_29 Google Scholar S. C. France, R. R. Hessler, R. C. Vrijenhoek, Genetic differentiation between spatially-disjunct populations of the deep-sea, hydrothermal vent-endemic amphipod Ventiella sulfuris, Mar. Biol., 114, 551–559, 1992. 10.1007/BF00357252 Web of Science®Google Scholar S. E. R. Franks, Temporal and spatial variability in the Endeavour Ridge neutrally buoyant hydrothermal plume: Patterns, forcing mechanisms and biogeochemical implications, Oregon Stare University Ph.D. thesis, 303 pp., 1992. Google Scholar S. L. Gardiner, M. L. Jones, Ultrastructure of spermiogenesis in the vestimentiferan tube worm Riftia pachyptila (Pogonophora: Obturata), Trans. Am. Microsc Soc., 104, 19–44, 1985. 10.2307/3226354 Web of Science®Google Scholar C. R. German, R. S. J. Sparks, Particle recycling to the TAG hydrothermal plume, Earth Planet. Sci. Lett., 116, 129–134, 1993. 10.1016/0012-821X(93)90049-F CASWeb of Science®Google Scholar J. P. Grassle, Genetic differentiation in populations of hydrothermal vent mussels (Bathymodiolus thermophilus) from the Galapagos Rift and 13°N on the East Pacific Rise, Hydrothermal Vents of the Eastern Pacific: An overview, Bull. Biol. Soc. Wash., 6, M. L. Jones, 429–442, 1985. Google Scholar J. P. Grassle, P. V. R. Snelgrove, C. A. Butman, Larval habitat choice in still water and flume flows by the opportunistic bivalve Mulinia lateralis, Netherlands Journal of Sea Research, 30, 33–44, 1993. 10.1016/0077-7579(92)90043-E Web of Science®Google Scholar R. G. Gustafson, D. T. J. Littlewood, R. A. Lutz, Gastropod egg capsules and their contents from deep-sea hydrothermal vent environments, Biol. Bull., 180, 34–55, 1991. 10.2307/1542427 Web of Science®Google Scholar R. M. Haymon, R. A. Koski, C. Sinclair, Fossils of hydrothermal vent worms from Cretaceous sulfide ores of the Samail Ophiolite, Oman, Science, 223, 1407–1409, 1984. 10.1126/science.223.4643.1407 CASPubMedWeb of Science®Google Scholar R. M. Haymon, D. J. Fornari, M. H. Edwards, S. Carbotte, D. Wright, K. C. MacDonald, Hydrothermal vent distribuuon along the East Pacific Rise Crest (9°09′-54′N) and its relationship to magmatic and tectonic processes on fastspreading mid-ocean ridges, Earth Planet. Sci. Lett., 104, 513–534, 1991. 10.1016/0012-821X(91)90226-8 Web of Science®Google Scholar K. R. Helfrich, T. M. Battisti, Experiments on baroclinic vortex shedding from hydrothermal plumes, J. Geophys. Res., 96, 12,511–12,518, 1991. 10.1029/90JC02643 Web of Science®Google Scholar K. R. Helfrich, K. G. Speer, Oceanic hydrothermal circulation: mesoscale and basin-scale flow, Physical, Chemical, Biological and Geological Interactions within Sea Floor Hydrothermal Systems, S. Humphris, R. Zierenberg, L. Mullineaux, R. Thomson, AGU, 1995. Google Scholar R. R. Hessler, W. M. Smithey, M. A. Boudrias, C. H. Keller, R. A. Lutz, J. J. Childress, Temporal change in megafauna at the Rose Garden hydrothermal vent (Galapagos Rift; eastern tropical Pacific), Deep-Sea Res., 35, 1681–1709, 1988. 10.1016/0198-0149(88)90044-1 Web of Science®Google Scholar G. Holloway, Systematic forcing of large-scale geophySical flows by eddytopography interaction, J. Fluid Mech., 184, 463–476, 1987. 10.1017/S0022112087002970 Web of Science®Google Scholar D. Jablonski, R. A. Lutz, Larval shell morphology: Ecological and paleontological applications, Skeletal Growth of Aquatic Organisms, D. C. Rhoads, R A. Lutz, 323–377, Plenum Press, New York, 1980. 10.1007/978-1-4899-4995-0_10 Google Scholar W. B. Jaeckle, D. T. Manahan, Feeding by a "nonfeeding" larva: Uptake of dissolved amino acids from seawater by lecithotrophic larvae of the gastropod Haliotis rufescens, Mar. Biol., 103, 87–94, 1989. 10.1007/BF00391067 CASWeb of Science®Google Scholar K. Johannesson, The paradox of Rockall: Why is a brooding gastropod (Litrorina saxatilis) more widespread than one having a planktonic larval dispersal stage (L. littorea)?, Mar. Biol., 99, 507–513, 1988. 10.1007/BF00392558 Web of Science®Google Scholar M. L. Jones, Riftia pachyptila, new genus, new species, the vestlmentiferan worm from the Galapagos Rift geothennal vents (Pogonophora), Proc. Biol. Soc. Wash., 93, 1295–1313, 1981. Google Scholar M. L. Jones, S. L. Gardiner, Evidence for a transient digestive track in Vestimentifera, Proc. Biol. Soc. Wash., 101, 423–433, 1988. Web of Science®Google Scholar M. L. Jones, S. L. Gardiner, On the early development of the vestimentiferan tube worm Ridgeia sp. and observations on the nervous system and trophosome of Ridgeia sp. and Riftia pachyprila, Biol. Bull., 177, 254–276, 1989. 10.2307/1541941 Web of Science®Google Scholar S. K. Jumper, V. Tunnicliffe, A. R. Fontaine, Biological influences on mineral deposits at deep-sea hydrothennal vents, Global Venting, Midwater, and Benthic Ecological Processes, National Undersea Research Program, Res. Rep., 88-4, M. P. De Luca, I. Babb, 99–118, U.S. Dept. Commerce, Rockville, MD, 1989. Google Scholar S. L. Kim, L. S. Mullineaux, K. R. Helfrich, Larval dispersal via entrainment into hydrothermal vent plumes, J. Geophys. Res., 99, 12,655–12,665, 1994. 10.1029/94JC00644 Web of Science®Google Scholar M. Kimra, "Stepping-stone" model of population, Ann. Rep Natl. Inst. Genet. Japan, 3, 62–63, 1953. Google Scholar G. Klinkhammer, A. Hudson, Dispersal patterns for hydrothennal plumes in the South Pacific using manganese as a tracer, Earth Planet. Sci. Lett., 79, 241–249, 1986. 10.1016/0012-821X(86)90182-2 CASWeb of Science®Google Scholar R. C. Lewontin, The Genetic Basis of Evolutionary Change, 346–Columbia University Press, New York, 1974. Google Scholar S. A. Little, K. D. Stolzenbach, R. P. Von Herzen, Measurements of plume flow from a hydrothermal vent field, J. Geophys. Res., 92, 2587–2596, 1987. 10.1029/JB092iB03p02587 Web of Science®Google Scholar J. E. Lupton, H. Craig, A major helium-3 source at 15°S on the East Pacific Rise, Science, 214, 13–18, 1981. 10.1126/science.214.4516.13 CASPubMedWeb of Science®Google Scholar R. A. Lutz, Dispersal of organisms at deep-sea hydrothermal vents: A review, Oceanol. Acta, special volume, 23–29, 1988. Web of Science®Google Scholar R. A. Lutz, D. Jablonski, D. C. Rhoads, R. D. Turner, Larval dispersal of a deep-sea hydrothermal vent bivalve from the Galapagos Rift, Mar. Biol., 57, 127–133, 1980. 10.1007/BF00387378 Web of Science®Google Scholar R. H. MacArthur, E. O. Wilson, The theory of island biogeography, 203–Princeton University Press, Princeton, N.J., 1967. Google Scholar E. Mayr, Change of genetic environment and evolution, Evolution as a Process, J. S. Huxley, A. C. Hardy, E. B. Ford, 156–180, Allen & Unwin, London, 1954. Google Scholar R. E. McDuff, Physical dynamics of deep-sea hydrothermal plumes, Physical, Chemical, Biological and Geological Interactions within Sea Floor Hydrothermal Systems, S. Humphris, R. Zierenberg, L. Mullineaux, R. Thomson, AGU, Washington, DC, 1995. 10.1029/GM091p0357 Google Scholar D. McHugh, population structure and reproductive biology of two sympatric hydrothermal vent polychaetes, Paralvinella pandorae and P. palmiformis, Mar. Biol., 10, 95–106, 1989. 10.1007/BF00391068 Web of Science®Google Scholar L. S. Mullineaux, P. H. Wiebe, E. T. Baker, Hydrothermal vent plumes: Larval highways in the deep sea?, Oceanus, 34, 64–68, 1991. Web of Science®Google Scholar L. S. Mullineaux, P. H. Wiebe, and E. T. Baker, Larvae of benthic invertebrates in hydrothermal vent plumes over Juan de Fuca Ridge, Mar. Biol., in press. Google Scholar The Ecology of Natural Disturbance and Palch Dynamics, S. T. A. Pickett, P. S. White, 472–Academic Press, Orlando Florida, 1985. Google Scholar J. D. Reeve, Stability, variability, and persistence in host-parasitoid systems, Ecology, 71, 422–426, 1990. 10.2307/1940295 Web of Science®Google Scholar G. I. Roden, Effect of seamounts and seamount chains on ocean circulation and thermohaline structure, Seamounts, Islands, and Atolls, Geophys, Monogr., 43, B. H. Keating, et al., 335–354, Amer. Geophys, Un., 1987. 10.1029/GM043p0335 Google Scholar R. S. Scheltema, On dispersal and planktonic larvae of benthic invertebrates: An eclectic overview and summary of problems, Bull. Mar. Sci., 39, 290–322, 1986. Web of Science®Google Scholar K. K. Selander, Genic variation in natural populations, Molecular Ellolution, F. J. Ayala, 21–45, Sinauer, Inc., Sunderland, Massachusetts, 1976. Google Scholar E. Schein-Fatton, Découverte sur la ride du Pacifique Oriental à13°N d′un Pectinidae (Bivalvia, Pteromorphia) d'affinités paleozoïques, C. R. Acad. Sci., Sér. III, 301, 491–496, 1985. Google Scholar M. Slatkin, Gene flow in natural populations, Ann. Rev. Ecol. Syst., 16, 393–430, 1985. 10.1146/annurev.es.16.110185.002141 Web of Science®Google Scholar M. Slatkin, Gene flow and the geographic structure of natural populations, Science, 236, 787–792, 1987. 10.1126/science.3576198 CASPubMedWeb of Science®Google Scholar M. Slatkin, Isolation by distance in equilibrium and non-equilibrium populations, Evolution, 47, 264–279, 1993. 10.2307/2410134 PubMedWeb of Science®Google Scholar M. Siatkin, Gene flow and population structure, Ecological Genetics, L. A. Real, 3–17, Princeton University Press, Princeton, New Jersey, 1994. Google Scholar E. C. Southward, Development of the gut and segmentatton of newly settled stages of Ridgeia (Vestimentifera): Implications for relationship between Vestimentifera and Pogonophora, J. Mar. Biol. Assoc. U.K., 68, 465–487, 1988. 10.1017/S0025315400043344 Web of Science®Google Scholar E. C. Southward, K. A. Coates, Spermatophores and sperm transfer in a vestimentiferan, Ridgeia piscesae Jones, 1985 (Pogonophora: Obturata), Can. J. Zool., 67, 2776–2781, 1989. 10.1139/z89-393 Web of Science®Google Scholar K. G. Speer, A forced baroclinic vortex around a hydrothermal plume, Geophys. Res. Lett., 16, 461–464, 1989. 10.1029/GL016i005p00461 Web of Science®Google Scholar L. D. Talley, T. M. Joyce, The double silica maximum in the North Pacific, J. Geophys. Res., 97, 5465–5480, 1992. 10.1029/92JC00037 CASWeb of Science®Google Scholar R. E. Thomson, R. L. Gordon, J. Dymond, Acoustic: doppler current profiler observations of a mid-ocean ridge hydrothermal plume, J. Geophys. Res., 94, 4709–4720, 1989. 10.1029/JC094iC04p04709 Web of Science®Google Scholar R. E. Thomson, S. E. Roth, J. Dymond, Near-inertial motions over a mid-ocean ridge: Effects of topography and hydrothermal plumes, J. Geophys. Res., 95, 7261–7278, 1990. 10.1029/JC095iC05p07261 Web of Science®Google Scholar V. Tunnicliffe, Observations on the effects of sampling on hydrothennal vent habitat and fauna of Axial Seamount, Juan de Fuca Ridge, J. Geophys. Res., 95, 12,961–12,966, 1990. 10.1029/JB095iB08p12961 Web of Science®Google Scholar R. D. Turner, R. A. Lutz, D. Jablonski, Modes of molluscan larval development at deep-sea hydrothermal venlS, Biol. Soc. Wash. Bull., 6, 167–184, 1985. Google Scholar C. L. Van Dover, J. R. Factor, A. B. Williams, C. J. Berg Jr., Reproductive patterns of decapod crustaceans from hydrothermal vents, Biol. Soc. Wash. Bull., 6, 223–227, 1985. Google Scholar C. L. Van Dover, C. J. Berg, R. D. Turner, Recruitment of marine invertebrates to hard substrates at deep-sea hydrothermal vents on the East Pacific Rise and Galapagos spreading center, Deep Sea Res., 35, 1833–1849, 1988. 10.1016/0198-0149(88)90052-0 Web of Science®Google Scholar R. C. Vnjenhoek, Animal population genetics and disturbance: The effects of local extinctions and recolonizations on heterozygosity and fitness, The Ecology of Natural Disturbance and Patch Dynamics, S. T. A. Pickett, P. S. White, 265–285, Academic Press, New York, 1985. Google Scholar H. H. Webber, Gastropoda: Prosobranchia, Reproduction of Marine Inverrebrates, 4, Molluscs: Gastropods and Cephalopods, A. C. Giese, J. S. Pearse, 197–Academic Press, New York, 1977. Google Scholar P. H. Wiebe, N. Copley, C. L. Van Dover, A. Tamse, F. Manrique, Deep-water zooplankton of the Guaymas Basin hydrothermal vent field, Deep-Sea Res., 35, 985–1013, 1988. 10.1016/0198-0149(88)90072-6 Web of Science®Google Scholar A. B. Willlams, A new crab family from the vicinity of submarine thennal vents on the Galapagos Rift (Crustacea: Decapoda: Brachyura), Proc. Biol. Soc. Wash., 93, 443–472, 1980. Google Scholar N. A. Williams, D. R. Dixon, E. C. Southward, P. W. H. Holland, Molecular evolution and diversification of the vestimentiferan tube worms, J. Mar. Biol. Assoc. U.K., 73, 437–452, 1993. 10.1017/S0025315400032987 CASWeb of Science®Google Scholar S. Wright, Evolution in Mendelian populations, Genetics, 16, 97–159, 1931. 10.1111/j.1471-8286.2006.01560.x CASPubMedGoogle Scholar C. M. Young, J. L. Cameron, K. J. Eckelbarger, Extended pre-feeding period in planktotrophic larvae of the bathyal echinoid Aspidodiadema jacobyi, J. Mar. Biol. Assoc. U.K., 69, 695–702, 1989. 10.1017/S0025315400031076 Web of Science®Google Scholar F. Zal, D. Jollivet, P. Chevaldonne, and D. Desbruyères, Reproductive strategy and popuiation structure of the deepsea hydrothermal vent worm Paralvinella grasslel (Polychaeta: Alvinellidae) at 13°N on the East Pacific Rise, Mar. Biol., in review. Google Scholar Citing Literature Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions, Volume 91 ReferencesRelatedInformation

Referência(s)
Altmetric
PlumX