Global atmospheric responses to Antarctic forcing
1998; Cambridge University Press; Volume: 27; Linguagem: Inglês
10.3189/1998aog27-1-521-527
ISSN1727-5644
AutoresDavid H. Bromwich, Biao Chen, Keith M. Hines, Richard I. Cullather,
Tópico(s)Oceanographic and Atmospheric Processes
ResumoTo evaluate the greatest impact that sea-ice anomalies around Antarctica could have on the global atmosphere, 15 year seasonal cycle simulations are conducted with the U.S. National Center for Atmospheric Research Community Climate Model version 2.1. Sensitivity simulations are performed with the following conditions: (1) all sea ice in the Southern Hemisphere is replaced by year-round open water, but the permanent ice shelves are retained (NSIS); and (2) all sea ice in the Southern Hemisphere and the major ice shelves are removed and replaced by open water (NISH). The results are compared to a standard run (CNT) with boundary conditions set for the present climate. The comparison shows that trains of positive and negative anomalies in zonal-mean fields extend into the tropical latitudes of the Northern Hemisphere. Anomalies are largest during April-October. The additional removal of the ice shelves in NISH enhances the response, as zonally averaged anomalies are similar in pattern to those in NSIS but are roughly twice as large poleward of 50° S, and only slightly larger farther north. Anomalies in the eddy fields are found in both hemispheres. in NISH, and to a lesser degree in NSIS. these anomalies appear to be related to a delayed northern advance over China during June of the rain front associated with the summer monsoon. Consequently, precipitation is enhanced in middle and southern China and decreased in northern China. Observational analyses have also found links between Antarctic sea-ice variations and modulations of the East Asian monsoon.
Referência(s)