Artigo Revisado por pares

Simulations and Models for Aspiration in a Supersonic Flow Using OVERFLOW

2015; American Institute of Aeronautics and Astronautics; Volume: 53; Issue: 7 Linguagem: Inglês

10.2514/1.j053214

ISSN

1533-385X

Autores

Nathan A. Wukie, Paul D. Orkwis, Mark G. Turner, Sean Duncan,

Tópico(s)

Plasma and Flow Control in Aerodynamics

Resumo

No AccessTechnical NoteSimulations and Models for Aspiration in a Supersonic Flow Using OVERFLOWNathan A. Wukie, Paul D. Orkwis, Mark G. Turner and Sean DuncanNathan A. WukieDepartment of Aerospace Engineering, University of Cincinnati, Cincinnati, Ohio 45221, Paul D. OrkwisDepartment of Aerospace Engineering, University of Cincinnati, Cincinnati, Ohio 45221, Mark G. TurnerDepartment of Aerospace Engineering, University of Cincinnati, Cincinnati, Ohio 45221 and Sean DuncanDepartment of Aerospace Engineering, University of Cincinnati, Cincinnati, Ohio 45221Published Online:21 May 2015https://doi.org/10.2514/1.J053214SectionsView Full TextPDFPDF Plus ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Lapsa A. P., "Experimental Study of Passive Ramps for Control of Shock-Boundary Layer Interactions," Ph.D. Thesis, Univ. of Michigan, Ann Arbor, MI, 2009. Google Scholar[2] Galbraith M. C., Orkwis P. D. and Benek J. A., "Multi-Row Micro-Ramp Actuators for Shock Wave Boundary-Layer Interaction Control," 47th AIAA Aerospace Sciences Meeting, AIAA Paper 2009-0321, Jan. 2009. LinkGoogle Scholar[3] Willis B. P., Davis D. O. and Hingst W. R., "Flow Coefficient Behavior for Boundary Layer Bleed Holes and Slots," 33rd Aerospace Sciences Meeting and Exhibit, AIAA Paper 1995-0031, Jan. 1995. LinkGoogle Scholar[4] Bodner J. P., Greber I., Davis D. O. and Hingst W. R., "Experimental Investigation of the Effect of a Single Bleed Hole on a Supersonic Turbulent Boundary-Layer," 32nd Joint Propulsion Conference and Exhibit, AIAA Paper 1996-2797, July 1996. LinkGoogle Scholar[5] Oorebeek J. M. and Babinsky H., "Flow Physics of a Normal-Hole Bled Supersonic Turbulent Boundary Layer," 51st AIAA Aerospace Sciences Meeting, AIAA Paper 2013-0526, Jan. 2013. LinkGoogle Scholar[6] Shih T. I.-P., Rimlinger M. J. and Chyu W. J., "Three-Dimensional Shock-Wave/Boundary-Layer Interactions with Bleed," AIAA Journal, Vol. 31, No. 10, 1993, pp. 1819–1826. doi:https://doi.org/10.2514/3.11854 LinkGoogle Scholar[7] Chyu W. J., Rimlinger M. J. and Shih T. I.-P., "Control of Shock-Wave/Boundary-Layer Interactions by Bleed," AIAA Journal, Vol. 33, No. 7, 1995, pp. 1239–1247. doi:https://doi.org/10.2514/3.12886 LinkGoogle Scholar[8] Rimlinger M. J., Shih T. I.-P. and Chyu W. J., "Shock-Wave/Boundary-Layer Interactions with Bleed Through Rows of Holes," Journal of Propulsion and Power, Vol. 12, No. 2, 1996, pp. 217–224. doi:https://doi.org/10.2514/3.24016 LinkGoogle Scholar[9] Hamed A. and Li Z., "Simulation of Bleed-Hole Rows for Supersonic Turbulent Boundary Layer Control," 46th AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper 2008-0067, 2008. LinkGoogle Scholar[10] Orkwis P. D., Turner M. G., Apyan A. C., Flenar K., Duncan S., Wukie N. and Benek J., "Modeling and Simulation of Bleed Holes in the Presence of Shock Wave/Boundary Layer Interaction," 51st AIAA Aerospace Sciences Meeting, AIAA Paper 2013-0425, Jan. 2013. LinkGoogle Scholar[11] Mayer D. W. and Paynter G. C., "Boundary Conditions for Unsteady Supersonic Inlet Analyses," AIAA Journal, Vol. 32, No. 6, 1994, pp. 1200–1206. doi:https://doi.org/10.2514/3.12120 LinkGoogle Scholar[12] Manavasi S., Morell A. and Hamed A., "Investigation of Segmented Bleed Modeling in Supersonic Turbulent Boundary Layer," 49th AIAA Aerospace Sciences Meeting, AIAA Paper 2011-0307, Jan. 2011. Google Scholar[13] Hamed A. and Lehnig T., "Investigation of Oblique Shock/Boundary-Layer Bleed Interaction," Journal of Propulsion and Power, Vol. 8, No. 2, 1992, pp. 418–424. doi:https://doi.org/10.2514/3.23494 LinkGoogle Scholar[14] Benson D. B., Shih T. I.-P., Davis D. O. and Willis B. P., "Boundary Conditions for CFD Simulations of Supersonic Boundary-Layer Bleed Through Discrete Holes," 38th Aerospace Sciences Meeting and Exhibit, AIAA Paper 2000-0888, 2000. LinkGoogle Scholar[15] Hamed A., Li A., Manavasi S. and Nelson C., "Flow Characteristics Through Porous Bleed in Supersonic Turbulent Boundary Layers," 47th AIAA Aerospace Sciences Meeting, AIAA Paper 2009-1260, Jan. 2009. Google Scholar[16] Hamed A., Manavasi S., Shin D., Morell A. and Nelson C., "Effect of Reynolds Number of Supersonic Flow Bleed," 48th AIAA Aerospace Sciences Meeting, AIAA Paper 2010-0591, Jan. 2010. LinkGoogle Scholar[17] Slater J. W., "Improvements in Modeling 90-Degree Bleed Holes for Supersonic Inlets," Journal of Propulsion and Power, Vol. 28, No. 4, 2012, pp. 773–781. doi:https://doi.org/10.2514/1.B34333 LinkGoogle Scholar[18] Wukie N. A., Orkwis P. D., Turner M. G. and Duncan S., "Comparison of Simulations and Models for Aspiration in a Supersonic Flow Using OVERFLOW," 50th AIAA Aerospace Sciences Meeting, AIAA Paper 2012-0483, Jan. 2012. LinkGoogle Scholar[19] Toro E. F., Spruce M. and Speares W., "Restoration of the Contact Surface in the HLL Riemann Solver," Shock Waves, Vol. 4, No. 1, 1994, pp. 25–34. doi:https://doi.org/10.1007/BF01414629 CrossrefGoogle Scholar[20] Koren B., "Upwind Schemes, Multigrid and Defect Correction for the Steady Navier–Stokes Equations," Proceedings of the 11th International Conference in Numerical Methods in Fluid Dynamics, Springer–Verlag, Berlin, 1989, pp. 344–348. Google Scholar[21] Nichols R. H. and Buning P. G., "User's Manual for OVERFLOW 2.1," NASA Langley Research Center, Hampton, VA, Aug. 2008. Google Scholar Previous article Next article

Referência(s)
Altmetric
PlumX