Roles of the Rectal Gland and the Kidneys in Salt and Water Excretion in the Spiny Dogfish
1965; University of Chicago Press; Volume: 38; Issue: 3 Linguagem: Inglês
10.1086/physzool.38.3.30152829
ISSN1937-4267
Autores Tópico(s)Fish biology, ecology, and behavior
ResumoPrevious articleNext article No AccessRoles of the Rectal Gland and the Kidneys in Salt and Water Excretion in the Spiny DogfishJ. Wendell BurgerJ. Wendell BurgerPDFPDF PLUS Add to favoritesDownload CitationTrack CitationsPermissionsReprints Share onFacebookTwitterLinkedInRedditEmail SectionsMoreDetailsFiguresReferencesCited by Volume 38, Number 3Jul., 1965 Article DOIhttps://doi.org/10.1086/physzool.38.3.30152829 Views: 11Total views on this site Citations: 73Citations are reported from Crossref Journal History This article was published in Physiological Zoology (1928-1998), which is continued by Physiological and Biochemical Zoology (1999-present). Copyright 1965 University of ChicagoPDF download Crossref reports the following articles citing this article:Jess MacPherson, Alyssa M. Weinrauch, W. Gary Anderson, Carol Bucking The gut microbiome may influence post-prandial nitrogen handling in an elasmobranch, the Pacific spiny dogfish (Squalus suckleyi), Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 272 (Oct 2022): 111269.https://doi.org/10.1016/j.cbpa.2022.111269Alyssa M. Weinrauch, Erik J. Folkerts, Tamzin A. Blewett, Carol Bucking, W. Gary Anderson Impacts of low salinity exposure and antibiotic application on gut transport activity in the Pacific spiny dogfish, Squalus acanthias suckleyi, Journal of Comparative Physiology B 190, no.55 (Jul 2020): 535–545.https://doi.org/10.1007/s00360-020-01291-4Salman Malakpour Kolbadinezhad, João Coimbra, Jonathan M. Wilson, Frank Melzner Effect of dendritic organ ligation on striped eel catfish Plotosus lineatus osmoregulation, PLOS ONE 13, no.1010 (Oct 2018): e0206206.https://doi.org/10.1371/journal.pone.0206206Courtney A. Deck, W. Gary Anderson, J. Michael Conlon, Patrick J. Walsh The activity of the rectal gland of the North Pacific spiny dogfish Squalus suckleyi is glucose dependent and stimulated by glucagon-like peptide-1, Journal of Comparative Physiology B 187, no.88 (Apr 2017): 1155–1161.https://doi.org/10.1007/s00360-017-1102-9E. R. Lauriano, S. Pergolizzi, J. Gangemi, M. Kuciel, G. Capillo, M. Aragona, C. Faggio , Microscopy Research and Technique 80, no.99 ( 2017): 1018.https://doi.org/10.1002/jemt.22896Souichirou Takabe, Mayu Inokuchi, Yoko Yamaguchi, Susumu Hyodo Distribution and dynamics of branchial ionocytes in houndshark reared in full-strength and diluted seawater environments, Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 198 (Aug 2016): 22–32.https://doi.org/10.1016/j.cbpa.2016.03.019Courtney A. Deck, Abigail B. Bockus, Brad A. Seibel, Patrick J. Walsh Effects of short-term hyper- and hypo-osmotic exposure on the osmoregulatory strategy of unfed North Pacific spiny dogfish (Squalus suckleyi), Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 193 (Mar 2016): 29–35.https://doi.org/10.1016/j.cbpa.2015.12.004R.L. Cramp, M.J. Hansen, C.E. Franklin Osmoregulation by juvenile brown-banded bamboo sharks, Chiloscyllium punctatum, in hypo- and hyper-saline waters, Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 185 (Jul 2015): 107–114.https://doi.org/10.1016/j.cbpa.2015.04.001David H. Evans Mid Century: The Third-Generation Redux, (Jan 2015): 245–318.https://doi.org/10.1007/978-1-4939-2960-3_6David H. Evans Research in the 1970s: The Fourth Generation, (Jan 2015): 381–457.https://doi.org/10.1007/978-1-4939-2960-3_8Patricia A. Wright, Chris M. Wood Regulation of Ions, Acid–Base, and Nitrogenous Wastes in Elasmobranchs, (Jan 2015): 279–345.https://doi.org/10.1016/B978-0-12-801286-4.00005-8Samuel C. Guffey, Greg G. Goss Time course of the acute response of the North Pacific spiny dogfish shark (Squalus suckleyi) to low salinity, Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 171 (May 2014): 9–15.https://doi.org/10.1016/j.cbpa.2014.02.004Erik Hviid Larsen, Lewis E. Deaton, Horst Onken, Michael O'Donnell, Martin Grosell, William H. Dantzler, Dirk Weihrauch Osmoregulation and Excretion, (Mar 2014): 405–573.https://doi.org/10.1002/cphy.c130004Yuan-Cheng Cheng, Ming-Chung Tu, Jyuan-Ru Tsai, Hui-Chen Lin, Li-Yih Lin Comparison of the osmoregulatory capabilities among three amphibious sea snakes (Laticauda spp.) in Taiwan, Zoological Studies 52, no.11 (Oct 2013).https://doi.org/10.1186/1810-522X-52-28Souichirou Takabe, Keitaro Teranishi, Shin Takaki, Makoto Kusakabe, Shigehisa Hirose, Toyoji Kaneko, Susumu Hyodo Morphological and functional characterization of a novel Na+/K+-ATPase-immunoreactive, follicle-like structure on the gill septum of Japanese banded houndshark, Triakis scyllium, Cell and Tissue Research 348, no.11 (Feb 2012): 141–153.https://doi.org/10.1007/s00441-012-1344-5Susan L. Edwards, William S. Marshall Principles and Patterns of Osmoregulation and Euryhalinity in Fishes, (Jan 2012): 1–44.https://doi.org/10.1016/B978-0-12-396951-4.00001-3James Claiborne Osmotic and Ionic Regulation in Fishes, (Feb 2014): 295–366.https://doi.org/10.1201/9780849380525.ch8 Chris M. Wood , Makiko Kajimura , Thomas P. Mommsen , and Patrick J. Walsh Is the Alkaline Tide a Signal to Activate Metabolic or Ionoregulatory Enzymes in the Dogfish Shark (Squalus acanthias)? C. M. Wood, M. Kajimura, T. P. Mommsen, and P. J. Walsh, Physiological and Biochemical Zoology 81, no.33 (Jul 2015): 278–287.https://doi.org/10.1086/587094R. D. Pillans, J. P. Good, W. G. Anderson, N. Hazon, C. E. Franklin Rectal gland morphology of freshwater and seawater acclimated bull sharks Carcharhinus leucas, Journal of Fish Biology 72, no.77 (May 2008): 1559–1571.https://doi.org/10.1111/j.1095-8649.2008.01765.xNeil Hammerschlag Osmoregulation in elasmobranchs: a review for fish biologists, behaviourists and ecologists, Marine and Freshwater Behaviour and Physiology 39, no.33 (Sep 2006): 209–228.https://doi.org/10.1080/10236240600815820Richard D. Pillans, Jonathan P. Good, W. Gary Anderson, Neil Hazon, Craig E. Franklin Freshwater to seawater acclimation of juvenile bull sharks (Carcharhinus leucas): plasma osmolytes and Na+/K+-ATPase activity in gill, rectal gland, kidney and intestine, Journal of Comparative Physiology B 175, no.11 (Nov 2004): 37–44.https://doi.org/10.1007/s00360-004-0460-2David H. Evans, Peter M. Piermarini, Keith P. Choe The Multifunctional Fish Gill: Dominant Site of Gas Exchange, Osmoregulation, Acid-Base Regulation, and Excretion of Nitrogenous Waste, Physiological Reviews 85, no.11 (Jan 2005): 97–177.https://doi.org/10.1152/physrev.00050.2003Richard D Pillans, Craig E Franklin Plasma osmolyte concentrations and rectal gland mass of bull sharks Carcharhinus leucas, captured along a salinity gradient, Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 138, no.33 (Jul 2004): 363–371.https://doi.org/10.1016/j.cbpb.2004.05.006Neil Hazon, Alan Wells, Richard D. Pillans, Jonathan P. Good, W. Gary Anderson, Craig E. Franklin Urea based osmoregulation and endocrine control in elasmobranch fish with special reference to euryhalinity, Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 136, no.44 (Dec 2003): 685–700.https://doi.org/10.1016/S1096-4959(03)00280-XMartin G Greenwell, Johanna Sherrill, Leigh A Clayton Osmoregulation in fish, Veterinary Clinics of North America: Exotic Animal Practice 6, no.11 (Jan 2003): 169–189.https://doi.org/10.1016/S1094-9194(02)00021-XJonathan M Wilson, John D Morgan, A.Wayne Vogl, David J Randall Branchial mitochondria-rich cells in the dogfish Squalus acanthias, Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 132, no.22 (Jun 2002): 365–374.https://doi.org/10.1016/S1095-6433(02)00042-9W. G. Anderson, J. P. Good, N. Hazon Changes in chloride secretion rate and vascular perfusion in the rectal gland of the European lesser-spotted dogfish in response to environmental and hormonal stimuli, Journal of Fish Biology 60, no.66 (Jun 2002): 1580–1590.https://doi.org/10.1111/j.1095-8649.2002.tb02450.xW.Gary Anderson, Maria C. Cerra, Alan Wells, Mary L. Tierney, Bruno Tota, Yoshio Takei, Neil Hazon Angiotensin and angiotensin receptors in cartilaginous fishes, Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 128, no.11 (Jan 2001): 31–40.https://doi.org/10.1016/S1095-6433(00)00295-6N. Hazon, M.L. Tierney, Y. Takei Renin-angiotensin system in elasmobranch fish: A review, Journal of Experimental Zoology 284, no.55 (Oct 1999): 526–534.https://doi.org/10.1002/(SICI)1097-010X(19991001)284:5 3.0.CO;2-RDavid H. Evans, Peter M. Piermarini, W.T.W. Potts Ionic transport in the fish gill epithelium, Journal of Experimental Zoology 283, no.77 (Jun 1999): 641–652.https://doi.org/10.1002/(SICI)1097-010X(19990601)283:7 3.0.CO;2-WLeonard B. Kirschner Extrarenal Mechanisms in Hydromineral and Acid‐Base Regulation in Aquatic Vertebrates, (Jan 2011): 577–622.https://doi.org/10.1002/cphy.cp130109John D. Morgan, George K. Iwama, Jonathan M. Wilson Oxygen consumption and Na + ,K + -ATPase activity of rectal gland and gill tissue in the spiny dogfish, Squalus acanthias, Canadian Journal of Zoology 75, no.55 (May 1997): 820–825.https://doi.org/10.1139/z97-105Leonard B. Kirschner The energetics of osmotic regulation in ureotelic and hypoosmotic fishes, Journal of Experimental Zoology 267, no.11 (Sep 1993): 19–26.https://doi.org/10.1002/jez.1402670104D.L. Friedman, R Roberts Purification and localization of brain-type creatine kinase in sodium chloride transporting epithelia of the spiny dogfish, Squalus acanthias., Journal of Biological Chemistry 267, no.66 (Feb 1992): 4270–4276.https://doi.org/10.1016/S0021-9258(19)50655-XW. M. Moran, J. D. Valentich Cl- secretion by cultured shark rectal gland cells. II. Effects of forskolin on cellular electrophysiology, American Journal of Physiology-Cell Physiology 260, no.44 (Apr 1991): C824–C831.https://doi.org/10.1152/ajpcell.1991.260.4.C824T. J. Shuttleworth Salt and Water Balance — Extrarenal Mechanisms, (Jan 1988): 171–199.https://doi.org/10.1007/978-3-642-73336-9_6I.W. Henderson, L. B. O'Toole, N. Hazon Kidney Function, (Jan 1988): 201–214.https://doi.org/10.1007/978-3-642-73336-9_7Stuart R. Chipkin, Jeffrey S. Stoff, Neil Aronin Immunohistochemical evidence for neural mediation of VIP activity in the dogfish rectal gland, Peptides 9, no.11 (Jan 1988): 119–124.https://doi.org/10.1016/0196-9781(88)90017-4D.G Fleishman, A.A Saulus, V.F Vasilieva Lithium in marine elasmobranchs as a natural marker of rectal gland contribution in sodium balance, Comparative Biochemistry and Physiology Part A: Physiology 84, no.44 (Jan 1986): 643–648.https://doi.org/10.1016/0300-9629(86)90379-8Makoto Endo Histological and enzymatic studies on the renal tubules of some marine elasmobranchs, Journal of Morphology 182, no.11 (Oct 1984): 63–69.https://doi.org/10.1002/jmor.1051820104T. Shuttleworth, M. Thorndyke An endogenous peptide stimulates secretory activity in the elasmobranch rectal gland, Science 225, no.46594659 (Jul 1984): 319–321.https://doi.org/10.1126/science.6330888L. Tort, M. Rosell, R. Flos Oxygen consumption of dogfish rectal gland after in vitro and in vivo zinc treatments, Marine Pollution Bulletin 15, no.77 (Jul 1984): 253–255.https://doi.org/10.1016/0025-326X(84)90364-3T. J. Shuttleworth Amphotericin B and the elasmobranch rectal gland: Implications for the relationship between oxygen consumption and ion transport, Journal of Experimental Zoology 221, no.22 (Jun 1982): 255–258.https://doi.org/10.1002/jez.1402210218J. N. Forrest, J. L. Boyer, T. A. Ardito, H. V. Murdaugh, J. B. Wade Structure of tight junctions during Cl secretion in the perfused rectal gland of the dogfish shark, American Journal of Physiology-Cell Physiology 242, no.55 (May 1982): C388–C392.https://doi.org/10.1152/ajpcell.1982.242.5.C388Franklin H. Epstein, Patricio Silva ENERGETICS OF ACTIVE CHLORIDE TRANSPORT IN SHARK RECTAL GLAND, (Jan 1982): 261–276.https://doi.org/10.1016/B978-0-12-775280-8.50017-2Patricio Silva, Jeffrey S. Stoff, Franklin H. Epstein HORMONAL CONTROL OF CHLORIDE SECRETION IN THE RECTAL GLAND OF SQUALUS ACANTHIAS, (Jan 1982): 277–293.https://doi.org/10.1016/B978-0-12-775280-8.50018-4David H. Evans Osmotic and Ionic Regulation by Freshwater and Marine Fishes, (Jan 1980): 93–122.https://doi.org/10.1007/978-1-4899-3659-2_5T. J. Shuttleworth, J. L. Thompson Oxygen consumption in the rectal gland of the dogfishScyliorhinus canicula and the effects of cyclic AMP, Journal of Comparative Physiology ? B 136, no.11 (Jan 1980): 39–43.https://doi.org/10.1007/BF00688620T. J. Shuttleworth, J. L. Thompson The mechanism of cyclic AMP stimulation of secretion in the dogfish rectal gland, Journal of Comparative Physiology ? B 140, no.33 (Jan 1980): 209–216.https://doi.org/10.1007/BF00690405D.H. Evans SALT TRANSPORT MECHANISMS IN BRANCHIAL EPITHELIA, (Jan 1980): 61–78.https://doi.org/10.1016/B978-0-08-024938-4.50008-2T. J. Shuttleworth, J. L. Thompson Cyclic AMP and ouabain-binding sites in the rectal gland of the dogfishScyliorhinus canicula, Journal of Experimental Zoology 206, no.22 (Nov 1978): 297–302.https://doi.org/10.1002/jez.1402060221T. M. Wong, D. K. O. Chan Physiological adjustments to dilution of the external medium in the lip-sharkHemiscyllium plagiosum (bennett). II. Branchial, renal and rectal gland function, Journal of Experimental Zoology 200, no.11 (Apr 1977): 85–95.https://doi.org/10.1002/jez.1402000111Jeffrey S. Stoff, Patricio Silva, Michael Field, John Forrest, Arthur Stevens, Franklin H. Epstein Cyclic AMP regulation of active chloride transport in the rectal gland of marine elasmobranchs, Journal of Experimental Zoology 199, no.33 (Mar 1977): 443–448.https://doi.org/10.1002/jez.1401990319Robert W. Griffith, Bruce L. Umminger, Blake F. Grant, Peter K. T. Pang, Leon Goldstein, Grace E. Pickford Composition of bladder urine of the coelacanth,Latimeria chalumnae, Journal of Experimental Zoology 196, no.33 (Jun 1976): 371–380.https://doi.org/10.1002/jez.1401960311D.R. Idler, K.M. Kane Interrenalectomy and NaK-ATPase activity in the rectal gland of the skate Raja ocellata, General and Comparative Endocrinology 28, no.11 (Jan 1976): 100–102.https://doi.org/10.1016/0016-6480(76)90142-8Bodil Schmidt-Nielsen Comparative physiology of cellular ion and volume regulation, Journal of Experimental Zoology 194, no.11 (Oct 1975): 207–219.https://doi.org/10.1002/jez.1401940114Geoffrey P. Haywood A preliminary investigation into the roles played by the rectal gland and kidneys in the osmoregulation of the striped dogfishPoroderma africanum, Journal of Experimental Zoology 193, no.22 (Aug 1975): 167–175.https://doi.org/10.1002/jez.1401930206Raymond T Jones, Kent S Price Osmotic responses of spiny dogfish (Squalus acanthias L.) Embryos to temperature and salinity stress, Comparative Biochemistry and Physiology Part A: Physiology 47, no.33 (Jan 1974): 971–979.https://doi.org/10.1016/0300-9629(74)90471-XG. P. Haywood A PRELIMINARY HISTOCHEMICAL EXAMINATION OF THE RECTAL GLAND IN THE DOGFISH PORODERMA AFRICANUM, Transactions of the Royal Society of South Africa 41, no.22 (Jan 1974): 203–208.https://doi.org/10.1080/00359197409520071John Kowarsky Extra-branchial pathways of salt exchange in a teleost fish, Comparative Biochemistry and Physiology Part A: Physiology 46, no.33 (Nov 1973): 477–486.https://doi.org/10.1016/0300-9629(73)90098-4Victor L. De Vlaming, Martin Sage Osmoregulation in the euryhaline elasmobranch, Dasyatis sabina, Comparative Biochemistry and Physiology Part A: Physiology 45, no.11 (May 1973): 31–44.https://doi.org/10.1016/0300-9629(73)90006-6G. P. Haywood Hypo-osmotic regulation coupled with reduced metabolic urea in the dogfish Poroderma africanum: An analysis of serum osmolarity, chloride, and urea, Marine Biology 23, no.22 (Jan 1973): 121–127.https://doi.org/10.1007/BF00389169I. CHESTER JONES, D. BELLAMY, D.K.O. CHAN, B.K. FOLLETT, I.W. HENDERSON, J.G. PHILLIPS, R.S. SNART BIOLOGICAL ACTIONS OF STEROID HORMONES IN NONMAMMALIAN VERTEBRATES, (Jan 1972): 414–480.https://doi.org/10.1016/B978-0-12-370350-7.50012-1Lawrence J. Read Chemical constituents of body fluids and urine of the holocephalan Hydrolagus colliei, Comparative Biochemistry and Physiology Part A: Physiology 39, no.22 (Jun 1971): 185–192.https://doi.org/10.1016/0300-9629(71)90076-4Paola De Piceis Polver, Graziella Bernocchi La Ghiandola Rettale in Myliobatis Aquila, Bolletino di zoologia 37, no.22 (Jan 1970): 151–160.https://doi.org/10.1080/11250007009438674W.N. Holmes, Edward M. Donaldson 1 The Body Compartments and the Distribution of Electrolytes, (Jan 1969): 1–89.https://doi.org/10.1016/S1546-5098(08)60082-5Cleveland P. Hickman, Benjamin F. Trump 2 The Kidney, (Jan 1969): 91–239.https://doi.org/10.1016/S1546-5098(08)60083-7Frank P. Conte 3 Salt Secretion, (Jan 1969): 241–292.https://doi.org/10.1016/S1546-5098(08)60084-9Howard A. Bern Hormones and Endocrine Glands of Fishes, Science 158, no.38003800 (Oct 1967): 455–462.https://doi.org/10.1126/science.158.3800.455Kent S. Price, Edwin P. Creaser Fluctuations in two osmoregulatory components, urea and sodium chloride, of the clearnose skate, Raja eglanteria bosc 1802—I. Upon laboratory modification of external salinities, Comparative Biochemistry and Physiology 23, no.11 (Oct 1967): 65–76.https://doi.org/10.1016/0010-406X(67)90473-2Kent S. Price Fluctuations in two osmoregulatory components, urea and sodium chloride, of the clearnose skate, Rafa eglanteria bosc 1802—II. Upon natural variation of the salinity of the external medium, Comparative Biochemistry and Physiology 23, no.11 (Oct 1967): 77–82.https://doi.org/10.1016/0010-406X(67)90474-4D.K.O. Chan, J.G. Phillips, I. Chester Jones Studies on electrolyte changes in the lip-shark, Hemiscyllium plagiosum (bennett), with special reference to hormonal influence on the rectal gland, Comparative Biochemistry and Physiology 23, no.11 (Oct 1967): 185–198.https://doi.org/10.1016/0010-406X(67)90487-2J.Wendell Burger, D.C Tosteson Sodium influx and efflux in the spiny dogfish Squalus acanthias, Comparative Biochemistry and Physiology 19, no.44 (Dec 1966): 649–653.https://doi.org/10.1016/0010-406X(66)90422-1
Referência(s)