Abrogation of bleomycin-induced epithelial apoptosis and lung fibrosis by captopril or by a caspase inhibitor
2000; American Physical Society; Volume: 279; Issue: 1 Linguagem: Inglês
10.1152/ajplung.2000.279.1.l143
ISSN1522-1504
AutoresRongqi Wang, Olivia Ibarra-Sunga, Luba Verlinski, Ruth Pick, Bruce D. Uhal,
Tópico(s)Pneumonia and Respiratory Infections
ResumoAngiotensin-converting enzyme is involved in apoptosis of alveolar epithelial cells (Wang R, Zagariya A, Ang E, Ibarra-Sunga O, and Uhal BD. Am J Physiol Lung Cell Mol Physiol 277: L1245–L1250, 1999). This study tested the ability of the angiotensin-converting enzyme inhibitor captopril or the caspase inhibitor Z-Val-Ala-Asp-fluoromethylketone (ZVAD-fmk) to block alveolar epithelial cell apoptosis and lung fibrosis in vivo in response to bleomycin (Bleo). Male Wistar rats received 8 U/kg of Bleo (bleomycin sulfate) or vehicle intratracheally. Subgroups of Bleo-treated rats received captopril, ZVAD-fmk, or vehicle alone. Lung collagen was assessed by picrosirius red or hydroxyproline assay at 1, 7, and 14 days post-Bleo, and apoptosis was detected by in situ end labeling (ISEL). Bleo increased alveolar septal and peribronchial collagen by 100 and 133%, respectively (both P < 0.01), by day 14 but not earlier. In contrast, ISEL was increased in alveolar and airway cells at all time points. Captopril or ZVAD-fmk inhibited collagen accumulation by 91 and 85%, respectively ( P < 0.01). Both agents also inhibited ISEL in alveoli by 99 and 81% and in airways by 67 and 63%, respectively. These data suggest that the efficacy of captopril to inhibit experimental lung fibrogenesis is related to inhibition of apoptosis. They also demonstrate the antifibrotic potential of a caspase inhibitor.
Referência(s)