Gas Exchange in Salamanders

1965; University of Chicago Press; Volume: 38; Issue: 3 Linguagem: Alemão

10.1086/physzool.38.3.30152835

ISSN

1937-4267

Autores

Walter G. Whitford, Victor H. Hutchison,

Tópico(s)

Bat Biology and Ecology Studies

Resumo

Previous articleNext article No AccessGas Exchange in SalamandersWalter G. Whitford, and Victor H. HutchisonWalter G. Whitford, and Victor H. HutchisonPDFPDF PLUS Add to favoritesDownload CitationTrack CitationsPermissionsReprints Share onFacebookTwitterLinkedInRedditEmail SectionsMoreDetailsFiguresReferencesCited by Volume 38, Number 3Jul., 1965 Article DOIhttps://doi.org/10.1086/physzool.38.3.30152835 Views: 34Total views on this site Citations: 86Citations are reported from Crossref Journal History This article was published in Physiological Zoology (1928-1998), which is continued by Physiological and Biochemical Zoology (1999-present). Copyright 1965 University of ChicagoPDF download Crossref reports the following articles citing this article:Lindsay Glass Campbell, Kelsey A. Anderson, Ruth Marcec‐Greaves Topical application of hormone gonadotropin‐releasing hormone ( GnRH‐A ) stimulates reproduction in the endangered Texas blind salamander ( Eurycea rathbuni ), Conservation Science and Practice 4, no.33 (Dec 2021).https://doi.org/10.1111/csp2.609Benjamin B. Johnson, Jeremy B. Searle, Jed P. Sparks Novel Allometric Estimators Improve Estimation Accuracy of Body Surface Area, Volume, and Surface Area-to-Volume Ratio in Lungless Salamanders (Urodela: Plethodontidae), Herpetologica 77, no.33 (Sep 2021).https://doi.org/10.1655/Herpetologica-D-21-00013.1Ryosuke Kakehashi, Atsushi Kurabayashi, Elena Pasyukova Patterns of Natural Selection on Mitochondrial Protein-Coding Genes in Lungless Salamanders: Relaxed Purifying Selection and Presence of Positively Selected Codon Sites in the Family Plethodontidae, International Journal of Genomics 2021 (Apr 2021): 1–12.https://doi.org/10.1155/2021/6671300Eric Riddell and Michael W. Sears Terrestrial Salamanders Maintain Habitat Suitability under Climate Change despite Trade-Offs between Water Loss and Gas Exchange, Physiological and Biochemical Zoology 93, no.44 (Jun 2020): 310–319.https://doi.org/10.1086/709558G.A. Marvin Acute physiological response by the plethodontid salamander Eurycea cirrigera (Southern Two-lined Salamander) to predation stress from alarm chemicals and predator kairomones, Canadian Journal of Zoology 98, no.55 (May 2020): 343–349.https://doi.org/10.1139/cjz-2019-0203Zachary R. Lewis, Jorge A. Dorantes, James Hanken Expression of a novel surfactant protein gene is associated with sites of extrapulmonary respiration in a lungless salamander, Proceedings of the Royal Society B: Biological Sciences 285, no.18881888 (Oct 2018): 20181589.https://doi.org/10.1098/rspb.2018.1589Kirsten Ferner Skin structure in newborn marsupials with focus on cutaneous gas exchange, Journal of Anatomy 233, no.33 (Jun 2018): 311–327.https://doi.org/10.1111/joa.12843Hugh S. Winwood-Smith, Craig R. White Short-duration respirometry underestimates metabolic rate for discontinuous breathers, The Journal of Experimental Biology 221, no.1414 (Jun 2018): jeb175752.https://doi.org/10.1242/jeb.175752Eric J Gangloff, Rory S Telemeco High Temperature, Oxygen, and Performance: Insights from Reptiles and Amphibians, Integrative and Comparative Biology 58, no.11 (May 2018): 9–24.https://doi.org/10.1093/icb/icy005Tricia M. Markle, Kenneth H. Kozak Low acclimation capacity of narrow‐ranging thermal specialists exposes susceptibility to global climate change, Ecology and Evolution 8, no.99 (Apr 2018): 4644–4656.https://doi.org/10.1002/ece3.4006Njal Rollinson, Locke Rowe Temperature-dependent oxygen limitation and the rise of Bergmann's rule in species with aquatic respiration, Evolution 72, no.44 (Mar 2018): 977–988.https://doi.org/10.1111/evo.13458Ellen M. Dawley Comparative Morphology of Plethodontid Olfactory and Vomeronasal Organs: How Snouts Are Packed, Herpetological Monographs 31, no.11 (Dec 2017): 169–209.https://doi.org/10.1655/HERPMONOGRAPHS-D-15-00008.1C. G. Farmer Pulmonary Transformations of Vertebrates, (Apr 2017): 99–112.https://doi.org/10.1007/978-3-319-44153-5_3Zachary R. Lewis, James Hanken Convergent evolutionary reduction of atrial septation in lungless salamanders, Journal of Anatomy 230, no.11 (Aug 2016): 16–29.https://doi.org/10.1111/joa.12535Luděk Podhajský, Lumír Gvoždík Variation in winter metabolic reduction between sympatric amphibians, Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 201 (Nov 2016): 110–114.https://doi.org/10.1016/j.cbpa.2016.07.003Peter Kristín, Lumír Gvoždík Influence of Surrounding Medium on Metabolic Rates in Alpine Newts, Ichthyosaura alpestris , during Aquatic Phase, Journal of Herpetology 50, no.11 (Mar 2016): 145–148.https://doi.org/10.1670/15-038Elisa M. Fonseca, Glauber S.F. da Silva, Marcelo Fernandes, Humberto Giusti, Carolina R. Noronha-de-Souza, Mogens L. Glass, Kênia C. Bícego, Luciane H. Gargaglioni The breathing pattern and the ventilatory response to aquatic and aerial hypoxia and hypercarbia in the frog Pipa carvalhoi, Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 162, no.33 (Jul 2012): 281–287.https://doi.org/10.1016/j.cbpa.2012.03.020Marvalee H. Wake, Maureen A. Donnelly A new lungless caecilian (Amphibia: Gymnophiona) from Guyana, Proceedings of the Royal Society B: Biological Sciences 277, no.16831683 (Nov 2009): 915–922.https://doi.org/10.1098/rspb.2009.1662Victor H. Hutchison Amphibians: Lungs' Lift Lost, Current Biology 18, no.99 (May 2008): R392–R393.https://doi.org/10.1016/j.cub.2008.03.006Tadashi Iwami, Osamu Kishida, Kinya Nishimura, Angus Buckling Direct and Indirect Induction of a Compensatory Phenotype that Alleviates the Costs of an Inducible Defense, PLoS ONE 2, no.1010 (Oct 2007): e1084.https://doi.org/10.1371/journal.pone.0001084A. N. Makanya, S. A. Tschanz, B. Haenni, P. H. Burri Functional respiratory morphology in the newborn quokka wallaby (Setonix brachyurus), Journal of Anatomy 211, no.11 (Jul 2007): 26–36.https://doi.org/10.1111/j.1469-7580.2007.00744.xC. BARKER JØRGENSEN Amphibian respiration and olfaction and their relationships: from Robert Townson (1794) to the present, Biological Reviews 75, no.33 (Jan 2007): 297–345.https://doi.org/10.1111/j.1469-185X.2000.tb00047.xLouis N. Irwin, Karen A. Talentino, Denise A. Caruso Effect of fasting and thermal acclimation on metabolism of juvenile axolotls(Ambystoma mexicanum), (Jan 1999): 1–12.https://doi.org/10.1007/978-3-642-60083-8_1Gordon R. Ultsch Gas exchange, hypercarbia and acid-base balance, paleoecology, and the evolutionary transition from water-breathing to air-breathing among vertebrates, Palaeogeography, Palaeoclimatology, Palaeoecology 123, no.1-41-4 (Jul 1996): 1–27.https://doi.org/10.1016/0031-0182(96)00121-6J. N. Maina Comparative Pulmonary Morphology and Morphometry: The Functional Design of Respiratory Systems, (Jan 1994): 111–232.https://doi.org/10.1007/978-3-642-78598-6_4L. Goniakowska-Witali?ska, J. M. Lauweryns, G. Zaccone, S. Fasulo, G. Tagliafierro Ultrastructure and immunocytochemistry of the neuroepithelial bodies in the lung of the tiger salamander,Ambystoma tigrinum (Urodela, amphibia), The Anatomical Record 234, no.33 (Nov 1992): 419–431.https://doi.org/10.1002/ar.1092340311Lawrence E Licht, James P Bogart Comparative rates of oxygen consumption and water loss in diploid and polyploid salamanders (genus ambystoma), Comparative Biochemistry and Physiology Part A: Physiology 97, no.44 (Jan 1990): 569–572.https://doi.org/10.1016/0300-9629(90)90129-GT Takeda Cutaneous and gill O2 uptake in the carp, Cyprinus carpio, as a function of metabolic rate, Comparative Biochemistry and Physiology Part A: Physiology 95, no.33 (Jan 1990): 425–427.https://doi.org/10.1016/0300-9629(90)90243-L John A. Ruben , and Arthur J. Boucot The Origin of the Lungless Salamanders (Amphibia: Plethodontidae), The American Naturalist 134, no.22 (Oct 2015): 161–169.https://doi.org/10.1086/284973Gary M. Malvin, Michael P. Hlastala Effects of environmental O2 on blood flow and diffusing capacity in amphibian skin, Respiration Physiology 76, no.22 (May 1989): 229–241.https://doi.org/10.1016/0034-5687(89)90100-XGiuliano Frangioni, Gianfranco Borgioli, Remo Martini Microcythemia from anemic hypoxia and normal erythropoiesis in the newt, Journal of Experimental Zoology 244, no.22 (Nov 1987): 183–186.https://doi.org/10.1002/jez.1402440202Alan W. Pinder Cutaneous diffusing capacity increases during hypoxia in cold submerged bullfrogs (Rana catesbeiana), Respiration Physiology 70, no.11 (Jan 1987): 85–95.https://doi.org/10.1016/S0034-5687(87)80034-8Graham Shelton, David R. Jones, William K. Milsom Control of Breathing in Ectothermic Vertebrates, (Jan 2011): 857–909.https://doi.org/10.1002/cphy.cp030228Gary M. Malvin, Michael P. Hlastala Regulation of cutaneous gas exchange by environmental O2 and CO2 in the frog, Respiration Physiology 65, no.11 (Jul 1986): 99–111.https://doi.org/10.1016/0034-5687(86)90009-5Elizabeth Sherman, Sallie G. Stadlen The effect of dehydration on rehydration and metabolic rate in a lunged and a lungless Salamander, Comparative Biochemistry and Physiology Part A: Physiology 85, no.33 (Jan 1986): 483–487.https://doi.org/10.1016/0300-9629(86)90434-2MARTIN E. FEDER, WARREN W. BURGGREN CUTANEOUS GAS EXCHANGE IN VERTEBRATES: DESIGN, PATTERNS, CONTROL AND IMPLICATIONS, Biological Reviews 60, no.11 (Feb 1985): 1–45.https://doi.org/10.1111/j.1469-185X.1985.tb00416.xG. M. Malvin, R. G. Boutilier Ventilation-Perfusion Relationships in Amphibia, (Jan 1985): 114–124.https://doi.org/10.1007/978-3-642-70610-3_9J. W. Patterson, P. M. C. Davies The influence of temperature, sexual condition, and season on the metabolic rate of the lizardPsammodromus hispanicus, Journal of Comparative Physiology B 154, no.33 (Apr 1984): 311–316.https://doi.org/10.1007/BF02464412Warren Burggren Transition of respiratory processes during amphibian metamorphosis: from egg to adult, (Jan 1984): 31–53.https://doi.org/10.1007/978-94-009-6536-2_3Martin E. Feder Effect of hypoxia and body size on the energy metabolism of lungless tadpoles,Bufo woodhousei, and air-breathing anuran larvae, Journal of Experimental Zoology 228, no.11 (Oct 1983): 11–19.https://doi.org/10.1002/jez.1402280103 Warren W. Burggren , Martin E. Feder , and Alan W. Pinder Temperature and the Balance between Aerial and Aquatic Respiration in Larvae of Rana berlandieri and Rana catesbeiana, Physiological Zoology 56, no.22 (Sep 2015): 263–273.https://doi.org/10.1086/physzool.56.2.30156058Martin E. Feder, Stevan J. Arnold Anaerobic metabolism and behavior during predatory encounters between snakes (Thamnophis elegans) and salamanders (Plethodon jordani), Oecologia 53, no.11 (Apr 1982): 93–97.https://doi.org/10.1007/BF00377141Arthur V. Brown, Lloyd C. Fitzpatrick Metabolic acclimation to temperature in the ozark salamander Plethodon dorsalis angusticlavius, Comparative Biochemistry and Physiology Part A: Physiology 69, no.33 (Jan 1981): 499–503.https://doi.org/10.1016/0300-9629(81)93010-3Arthur V. Brown, Lloyd C. Fitzpatrick Thermal acclimation and metabolism in the gray-bellied salamander, Eurycea multiplicata griseogaster (plethodontidae), Comparative Biochemistry and Physiology Part A: Physiology 69, no.33 (Jan 1981): 505–509.https://doi.org/10.1016/0300-9629(81)93011-5Lucyna Goniakowska-Witalińska Scanning and transmission electron microscopic study of the lung of the newt, Triturus alpestris Laur., Cell and Tissue Research 205, no.11 (Jan 1980): 133–145.https://doi.org/10.1007/BF00234449A. Miodoński, A. Jasiński Scanning electron microscopy of microcorrosion casts of the vascular bed in the skin of the spotted salamander, Salamandra salamandra L., Cell and Tissue Research 196, no.11 (Jan 1979): 153–162.https://doi.org/10.1007/BF00236356Donald C. Jackson, Beth A. Braun Respiratory control in bullfrogs: Cutaneous versus pulmonary response to selective CO2 exposure, Journal of Comparative Physiology ? B 129, no.44 (Jan 1979): 339–342.https://doi.org/10.1007/BF00686991G. Nonnotte, R. Kirsch Cutaneous respiration in seven sea-water teleosts, Respiration Physiology 35, no.22 (Nov 1978): 111–118.https://doi.org/10.1016/0034-5687(78)90016-6Lucyna Goniakowska-Witalińska Ultrastructural and morphometric study of the lung of the European salamander, Salamandra salamandra L., Cell and Tissue Research 191, no.22 (Jul 1978): 343–356.https://doi.org/10.1007/BF00222429DONALD C. JACKSON Respiratory Control in Air-Breathing Ectotherms, (Jan 1978): 93–130.https://doi.org/10.1016/B978-0-12-204650-6.50009-5Martin E. Feder Oxygen consumption and activity in salamanders: Effect of body size and lunglessness, Journal of Experimental Zoology 202, no.33 (Dec 1977): 403–413.https://doi.org/10.1002/jez.1402020310 Victor H. Hutchison , L. Douglas Turney , and Ronald K. Gratz Aerobic and Anaerobic Metabolism during Activity in the Salamander Ambystoma Tigrinum, Physiological Zoology 50, no.33 (Sep 2015): 189–202.https://doi.org/10.1086/physzool.50.3.30155722 Henry J. Harlow Seasonal Oxygen Metabolism and Cutaneous Osmoregulation in the California Newt, Taricha Torosa, Physiological Zoology 50, no.33 (Sep 2015): 231–236.https://doi.org/10.1086/physzool.50.3.30155726R. Kirsch, G. Nonnotte Cutaneous respiration in three freshwater teleosts, Respiration Physiology 29, no.33 (May 1977): 339–354.https://doi.org/10.1016/0034-5687(77)90008-1 Martin E. Feder Lunglessness, Body Size, and Metabolic Rate in Salamanders, Physiological Zoology 49, no.44 (Sep 2015): 398–406.https://doi.org/10.1086/physzool.49.4.30155702Gordon R. Ultsch Respiratory surface area as a factor controlling the standard rate of O2 consumption of aquatic salamanders, Respiration Physiology 26, no.33 (May 1976): 357–369.https://doi.org/10.1016/0034-5687(76)90006-2Martin E. Feder Oxygen consumption and body temperature in neotropical and temperate zone lungless salamanders (Amphibia: Plethodontidae), Journal of Comparative Physiology ? B 110, no.22 (Jan 1976): 197–208.https://doi.org/10.1007/BF00689308James R. Spotila, Evan N. Berman Determination of skin resistance and the role of the skin in controlling water loss in amphibians and reptiles, Comparative Biochemistry and Physiology Part A: Physiology 55, no.44 (Jan 1976): 407–411.https://doi.org/10.1016/0300-9629(76)90069-4Alan G. Heath Respiratory responses to hypoxia by Ambystoma tigrinum larvae, paedomorphs, and metamorphosed adults, Comparative Biochemistry and Physiology Part A: Physiology 55, no.11 (Jan 1976): 45–49.https://doi.org/10.1016/0300-9629(76)90121-3Donald C. Jackson, Jonathan Allen, Peter K. Strupp The contribution of non-pulmonary surfaces to CO2 loss in 6 species of turtles at 20°C, Comparative Biochemistry and Physiology Part A: Physiology 55, no.33 (Jan 1976): 243–246.https://doi.org/10.1016/0300-9629(76)90139-0Donald C. Jackson Non-pulmonary CO2 loss during diving in the turtle, Pseudemys script a elegans, Comparative Biochemistry and Physiology Part A: Physiology 55, no.33 (Jan 1976): 237–241.https://doi.org/10.1016/0300-9629(76)90138-9 Andrew T. Beckenbach Influence of Body Size and Temperature on the Critical Oxygen Tension of Some Plethodontid Salamanders, Physiological Zoology 48, no.44 (Sep 2015): 338–347.https://doi.org/10.1086/physzool.48.4.30155659 John M. Wakeman , and Gordon R. Ultsch The Effects of Dissolved O₂ and CO₂ on Metabolism and Gas-Exchange Partitioning in Aquatic Salamanders, Physiological Zoology 48, no.44 (Sep 2015): 348–359.https://doi.org/10.1086/physzool.48.4.30155660Randall N. Gatz, Eugene C. Crawford, Johannes Piiper Kinetics of inert gas equilibration in an exclusively skin-breathing salamander, Desmognathus fuscus, Respiration Physiology 24, no.11 (Jun 1975): 15–29.https://doi.org/10.1016/0034-5687(75)90118-8Albert F. Bennett, Paul Licht Anaerobic metabolism during activity in amphibians, Comparative Biochemistry and Physiology Part A: Physiology 48, no.22 (Jun 1974): 319–327.https://doi.org/10.1016/0300-9629(74)90712-9Randall N. Gatz, Eugene C. Crawford, Johannes Piiper Respiratory properties of the blood of a lungless and gill-less salamander, Desmognathus fuscus, Respiration Physiology 20, no.11 (Feb 1974): 33–41.https://doi.org/10.1016/0034-5687(74)90016-4Randall N. Gatz, Eugene C. Crawford, Johannes Piiper Metabolic and heart rate response of the plethodontid salamander Desmognathus fuscus to hypoxia, Respiration Physiology 20, no.11 (Feb 1974): 43–49.https://doi.org/10.1016/0034-5687(74)90017-6Thomas Standaert, Kjell Johansen Cutaneous gas exchange in snakes, Journal of Comparative Physiology 89, no.44 (Jan 1974): 313–320.https://doi.org/10.1007/BF00695349Lloyd C Fitzpatrick Influence of seasonal temperatures on the energy budget and metabolic rates of the northern two-lined salamander Eurycea bislineata bislineata, Comparative Biochemistry and Physiology Part A: Physiology 45, no.33 (Jul 1973): 807–818.https://doi.org/10.1016/0300-9629(73)90083-2Albert F. Bennett, Paul Licht Relative contributions of anaerobic and aerobic energy production during activity in amphibia, Journal of Comparative Physiology 87, no.44 (Jan 1973): 351–360.https://doi.org/10.1007/BF00695269C. Lenfant, K. Johansen Gas exchange in gill, skin, and lung breathing, Respiration Physiology 14, no.1-21-2 (Mar 1972): 211–218.https://doi.org/10.1016/0034-5687(72)90029-1David R. Jones Anaerobiosis and the oxygen debt in an anuran amphibian,Rana esculenta (L.), Journal of Comparative Physiology 77, no.44 (Jan 1972): 356–382.https://doi.org/10.1007/BF00694941Lloyd C Fitzpatrick, John R Bristol, Robert M Stokes Thermal acclimation and metabolic rates in the dusky salamander Desmognathus fuscus, Comparative Biochemistry and Physiology Part A: Physiology 41, no.11 (Jan 1972): 89–96.https://doi.org/10.1016/0300-9629(72)90036-9Sonia Espina, Mireya Rojas A comparison of the size of the urinary bladder of two south american anurans of different habitat, Comparative Biochemistry and Physiology Part A: Physiology 41, no.11 (Jan 1972): 115–119.https://doi.org/10.1016/0300-9629(72)90039-4Lloyd C. Fitzpatrick Influence of sex and reproductive condition on metabolic rates in the allegheny mountain salamander Desmognathus ochrophaeus, Comparative Biochemistry and Physiology Part A: Physiology 40, no.33 (Nov 1971): 603–608.https://doi.org/10.1016/0300-9629(71)90244-1Lloyd C. Fitzpatrick, John R. Bristol, Robert M. Stokes Thermal acclimation and metabolism in the allegheny mountain salamander Desmognathus ochrophaeus, Comparative Biochemistry and Physiology Part A: Physiology 40, no.33 (Nov 1971): 681–688.https://doi.org/10.1016/0300-9629(71)90253-2Daniel B. Drachman, Marcus Singer Regeneration in botulinum-poisoned forelimbs of the newt, Triturus, Experimental Neurology 32, no.11 (Jul 1971): 1–11.https://doi.org/10.1016/0014-4886(71)90159-2Michael L. Coates, James Metcalfe Evolution of blood oxygen transport in the newt, Taricha, Respiration Physiology 11, no.11 (Dec 1970): 94–103.https://doi.org/10.1016/0034-5687(70)90105-2J. Farber, H. Rahn Gas exchange between air and water and the ventilation pattern in the electric eel, Respiration Physiology 9, no.22 (May 1970): 151–161.https://doi.org/10.1016/0034-5687(70)90067-8Harold Heatwole, Frank Torres, Sheila Blasini De Austin, Audry Heatwole Studies on anuran water balance—I. Dynamics of evaporative water loss by the coquí, eleutherodactylus portoricensis, Comparative Biochemistry and Physiology 28, no.11 (Jan 1969): 245–269.https://doi.org/10.1016/0010-406X(69)91342-5Robert W Guimond, Victor H Hutchison The effect of temperature and photoperiod on gas exchange in the leopard frog, Rana pipiens, Comparative Biochemistry and Physiology 27, no.11 (Oct 1968): 177–195.https://doi.org/10.1016/0010-406X(68)90763-9 Victor H. Hutchison , Walter G. Whitford , and Margaret Kohl Relation of Body Size and Surface Area to Gas Exchange in Anurans, Physiological Zoology 41, no.11 (Sep 2015): 65–85.https://doi.org/10.1086/physzool.41.1.30158485Claude Lenfant, Kjell Johansen Respiratory adaptations in selected amphibians, Respiration Physiology 2, no.33 (May 1967): 247–260.https://doi.org/10.1016/0034-5687(67)90030-8 Walter G. Whitford , and Victor H. Hutchison Body Size and Metabolic Rate in Salamanders, Physiological Zoology 40, no.22 (Sep 2015): 127–133.https://doi.org/10.1086/physzool.40.2.30152447R. Lawson The anatomy of the heart of Hypogeohis rostratus (Amphibia, Apoda) and its possible mode of action, Journal of Zoology 149, no.33 (Aug 2009): 320–336.https://doi.org/10.1111/j.1469-7998.1966.tb04052.xG M Hughes Development of Gas Exchange, Proceedings of the Royal Society of Medicine 59, no.66 (Sep 2016): 494–500.https://doi.org/10.1177/003591576605900609

Referência(s)
Altmetric
PlumX