N-Myc induction stimulated by insulin-like growth factor I through mitogen-activated protein kinase signaling pathway in human neuroblastoma cells.
2000; National Institutes of Health; Volume: 60; Issue: 1 Linguagem: Inglês
Autores
Akiko Misawa, Hajime Hosoi, A Arimoto, Takuma Shikata, Shinji Akioka, Takafumi Matsumura, Peter J. Houghton, T. Sawada,
Tópico(s)Erythrocyte Function and Pathophysiology
ResumoInsulin-like growth factor I (IGF-I) stimulates proliferation, survival, and differentiation in many cell types, including pediatric neuroblastomas. The effect is mediated via the type I IGF-I receptor (IGF-IR), which is essential for growth in these cells. Several lines of evidence indicate that IGF-IR function may be particularly important in the pathogenesis of neuroblastoma. Amplification of the N-myc oncogene or overexpression of N-Myc oncoprotein has been reported to be associated with resistance to therapy and poor prognosis of neuroblastomas. It was therefore of interest to analyze whether IGF-I signaling regulated expression of N-myc in KP-N-RT human neuroblastoma cells as an experimental model that has amplified N-myc. We found that IGF-I induces N-myc mRNA and protein in the KP-N-RT with maximums of four and six times more than the basal level at 2 and 3 h after stimulation, respectively. These effects of IGF-I were blocked by a neutralizing antibody against IGF-IR (alpha-IR3). Exogenous IGF-I induced phosphorylation and activation of extracellular signal-regulated kinases p44/42 (ERK1 and ERK2), with a maximal level 30 min after the stimulation. The MEK1 inhibitor PD98059 reduced IGF-I-mediated p44/42 MAPKs phosphorylation and produced a parallel reduction of IGF-I-stimulated N-Myc induction. Furthermore, both alpha-IR3 and PD98059 inhibited G1-S cell cycle progression stimulated by IGF-I. Our results demonstrate that IGF-I induces N-Myc in the KP-N-RT neuroblastoma cell line at the RNA level and establishes a clear correlation between N-Myc induction and activation of p44/42 MAPK signaling.
Referência(s)