Artigo Acesso aberto Revisado por pares

Pattern and Component Motion Responses in Mouse Visual Cortical Areas

2015; Elsevier BV; Volume: 25; Issue: 13 Linguagem: Inglês

10.1016/j.cub.2015.05.028

ISSN

1879-0445

Autores

Ashley Juavinett, Edward M. Callaway,

Tópico(s)

Neural dynamics and brain function

Resumo

Spanning about 9 mm2 of the posterior cortex surface, the mouse's small but organized visual cortex has recently gained attention for its surprising sophistication and experimental tractability [1Glickfeld L.L. Reid R.C. Andermann M.L. A mouse model of higher visual cortical function.Curr. Opin. Neurobiol. 2014; 24: 28-33Crossref PubMed Scopus (48) Google Scholar, 2Carandini M. Churchland A.K. Probing perceptual decisions in rodents.Nat. Neurosci. 2013; 16: 824-831Crossref PubMed Scopus (168) Google Scholar, 3Hübener M. Mouse visual cortex.Curr. Opin. Neurobiol. 2003; 13: 413-420Crossref PubMed Scopus (55) Google Scholar]. Though it lacks the highly ordered orientation columns of primates [4Ohki K. Chung S. Ch'ng Y.H. Kara P. Reid R.C. Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex.Nature. 2005; 433: 597-603Crossref PubMed Scopus (866) Google Scholar], mouse visual cortex is organized retinotopically [5Wagor E. Mangini N.J. Pearlman A.L. Retinotopic organization of striate and extrastriate visual cortex in the mouse.J. Comp. Neurol. 1980; 193: 187-202Crossref PubMed Scopus (194) Google Scholar] and contains at least ten extrastriate areas that likely integrate more complex visual features via dorsal and ventral streams of processing [6Wang Q. Burkhalter A. Area map of mouse visual cortex.J. Comp. Neurol. 2007; 502: 339-357Crossref PubMed Scopus (320) Google Scholar, 7Marshel J.H. Garrett M.E. Nauhaus I. Callaway E.M. Functional specialization of seven mouse visual cortical areas.Neuron. 2011; 72: 1040-1054Abstract Full Text Full Text PDF PubMed Scopus (262) Google Scholar, 8Andermann M.L. Kerlin A.M. Roumis D.K. Glickfeld L.L. Reid R.C. Functional specialization of mouse higher visual cortical areas.Neuron. 2011; 72: 1025-1039Abstract Full Text Full Text PDF PubMed Scopus (267) Google Scholar, 9Wang Q. Gao E. Burkhalter A. Gateways of ventral and dorsal streams in mouse visual cortex.J. Neurosci. 2011; 31: 1905-1918Crossref PubMed Scopus (139) Google Scholar, 10Wang Q. Sporns O. Burkhalter A. Network analysis of corticocortical connections reveals ventral and dorsal processing streams in mouse visual cortex.J. Neurosci. 2012; 32: 4386-4399Crossref PubMed Scopus (234) Google Scholar, 11Wang Q. Burkhalter A. Stream-related preferences of inputs to the superior colliculus from areas of dorsal and ventral streams of mouse visual cortex.J. Neurosci. 2013; 33: 1696-1705Crossref PubMed Scopus (51) Google Scholar, 12Roth M.M. Helmchen F. Kampa B.M. Distinct functional properties of primary and posteromedial visual area of mouse neocortex.J. Neurosci. 2012; 32: 9716-9726Crossref PubMed Scopus (64) Google Scholar, 13Garrett M.E. Nauhaus I. Marshel J.H. Callaway E.M. Topography and areal organization of mouse visual cortex.J. Neurosci. 2014; 34: 12587-12600Crossref PubMed Scopus (177) Google Scholar, 14Polack P.O. Contreras D. Long-range parallel processing and local recurrent activity in the visual cortex of the mouse.J. Neurosci. 2012; 32: 11120-11131Crossref PubMed Scopus (48) Google Scholar]. Extending our understanding of visual perception to the mouse model is justified by the evolving ability to interrogate specific neural circuits using genetic and molecular techniques [15Luo L. Callaway E.M. Svoboda K. Genetic dissection of neural circuits.Neuron. 2008; 57: 634-660Abstract Full Text Full Text PDF PubMed Scopus (596) Google Scholar, 16Callaway E.M. A molecular and genetic arsenal for systems neuroscience.Trends Neurosci. 2005; 28: 196-201Abstract Full Text Full Text PDF PubMed Scopus (83) Google Scholar]. In order to probe the functional properties of the putative mouse dorsal stream, we used moving plaids, which demonstrate differences between cells that identify local motion (component cells) and those that integrate global motion of the plaid (pattern cells; Figure 1A; [17Movshon J.A. Adelson E.H. Gizzi M.S. Newsome W.T. The analysis of moving visual patterns.in: Chagas C. Gattass R. Gross C. Pattern Recognition Mechanisms. Academia Scientiarum Scripta, 1985: 117-151Crossref Google Scholar]). In primates, there are sparse pattern cell responses in primate V1 [18Tinsley C.J. Webb B.S. Barraclough N.E. Vincent C.J. Parker A. Derrington A.M. The nature of V1 neural responses to 2D moving patterns depends on receptive-field structure in the marmoset monkey.J. Neurophysiol. 2003; 90: 930-937Crossref PubMed Scopus (43) Google Scholar, 19Khawaja F.A. Tsui J.M.G. Pack C.C. Pattern motion selectivity of spiking outputs and local field potentials in macaque visual cortex.J. Neurosci. 2009; 29: 13702-13709Crossref PubMed Scopus (56) Google Scholar], but many more in higher-order regions; 25%–30% of cells in MT [17Movshon J.A. Adelson E.H. Gizzi M.S. Newsome W.T. The analysis of moving visual patterns.in: Chagas C. Gattass R. Gross C. Pattern Recognition Mechanisms. Academia Scientiarum Scripta, 1985: 117-151Crossref Google Scholar] and 40%–60% in MST [20Khawaja F.A. Liu L.D. Pack C.C. Responses of MST neurons to plaid stimuli.J. Neurophysiol. 2013; 110: 63-74Crossref PubMed Scopus (18) Google Scholar] are pattern direction selective. We present evidence that mice have small numbers of pattern cells in areas LM and RL, while V1, AL, and AM are largely component-like. Although the proportion of pattern cells is smaller in mouse visual cortex than in primate MT, this study provides evidence that the organization of the mouse visual system shares important similarities to that of primates and opens the possibility of using mice to probe motion computation mechanisms.

Referência(s)