Artigo Acesso aberto Revisado por pares

Quantitative disease resistance to the bacterial pathogen X anthomonas campestris involves an A rabidopsis immune receptor pair and a gene of unknown function

2015; Wiley; Volume: 17; Issue: 4 Linguagem: Inglês

10.1111/mpp.12298

ISSN

1464-6722

Autores

Marilyne Debieu, Carine Huard‐Chauveau, Anne Génissel, Fabrice Roux, Dominique Roby,

Tópico(s)

Plant Pathogenic Bacteria Studies

Resumo

Although quantitative disease resistance (QDR) is a durable and broad-spectrum form of resistance in plants, the identification of the genes underlying QDR is still in its infancy. RKS1 (Resistance related KinaSe1) has been reported recently to confer QDR in Arabidopsis thaliana to most but not all races of the bacterial pathogen Xanthomonas campestris pv. campestris (Xcc). We therefore explored the genetic bases of QDR in A. thaliana to diverse races of X. campestris (Xc). A nested genome-wide association mapping approach was used to finely map the genomic regions associated with QDR to Xcc12824 (race 2) and XccCFBP6943 (race 6). To identify the gene(s) implicated in QDR, insertional mutants (T-DNA) were selected for the candidate genes and phenotyped in response to Xc. We identified two major QTLs that confer resistance specifically to Xcc12824 and XccCFBP6943. Although QDR to Xcc12824 is conferred by At5g22540 encoding for a protein of unknown function, QDR to XccCFBP6943 involves the well-known immune receptor pair RRS1/RPS4. In addition to RKS1, this study reveals that three genes are involved in resistance to Xc with strikingly different ranges of specificity, suggesting that QDR to Xc involves a complex network integrating multiple response pathways triggered by distinct pathogen molecular determinants.

Referência(s)