Artigo Acesso aberto Revisado por pares

Proopiomelanocortin (POMC) and testing the phylogenetic position of turtles (Testudines)

2010; Wiley; Volume: 49; Issue: 2 Linguagem: Inglês

10.1111/j.1439-0469.2010.00589.x

ISSN

1439-0469

Autores

Rosemary E. Becker, Roldán A. Valverde, Brian I. Crother,

Tópico(s)

Amphibian and Reptile Biology

Resumo

Journal of Zoological Systematics and Evolutionary ResearchVolume 49, Issue 2 p. 148-159 Proopiomelanocortin (POMC) and testing the phylogenetic position of turtles (Testudines) Proopiomelanocortin (POMC) und die Untersuchung der Phylogenetischen Position der Schildkröten (Testudines) Rosemary E. Becker, Rosemary E. Becker Department of Biological Sciences, Southeastern Louisiana University, Hammond, LA, USASearch for more papers by this author Roldán A. Valverde, Roldán A. Valverde Department of Biological Sciences, Southeastern Louisiana University, Hammond, LA, USASearch for more papers by this author Brian I. Crother, Brian I. Crother Department of Biological Sciences, Southeastern Louisiana University, Hammond, LA, USASearch for more papers by this author Rosemary E. Becker, Rosemary E. Becker Department of Biological Sciences, Southeastern Louisiana University, Hammond, LA, USASearch for more papers by this author Roldán A. Valverde, Roldán A. Valverde Department of Biological Sciences, Southeastern Louisiana University, Hammond, LA, USASearch for more papers by this author Brian I. Crother, Brian I. Crother Department of Biological Sciences, Southeastern Louisiana University, Hammond, LA, USASearch for more papers by this author First published: 15 December 2010 https://doi.org/10.1111/j.1439-0469.2010.00589.xCitations: 9 Corresponding author: Brian I. Crother ([email protected])Contributing authors: Rosemary E. Becker ([email protected]), Roldan Valwerde ([email protected]) Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstracten Morphological and molecular studies have inferred multiple hypotheses for the phylogenetic relationships of Testudines. The hypothesis that Testudines are the only extant anapsid amniotes and the sister taxon of diapsid amniotes is corroborated by morphological studies, while the hypothesis that Testudines are diapsid amniotes is corroborated by more recent molecular and morphological studies. In this study, the placement of Testudines is tested using the full length cDNA sequence of the polypeptide hormone precursor proopiomelanocortin (POMC). Because only extant taxa have been used, the hypotheses being tested are limited to the following (1) Testudines as the sister taxon of Archosauria, (2) Testudines included in Archosauria and the sister taxon of Crocodilia, (3) Testudines as the sister taxon of Lepidosauria, (4) Testudines as the sister taxon of Sauria, and (5) Testudines as the sister taxon of a monophyletic Mammalia–Sauria clade. Neither Maximum likelihood, Bayesian, or maximum parsimony analyses are able to falsify the hypothesis of (Archosauria (Lepidosauria, Testudines)) and as such is the preferred inference from the POMC data. Zusammenfassungde Morphologische und molekluargenetische Untersuchungen haben zu verschiedenen Hypothesen über die Verwandtschaftsverhältnisse der Testudines geführt. Die Hypothese, dass Testudines die einzigen noch lebenden anapsiden Amnioten und das Schwestertaxon der diapsiden Amnioten sind, wird durch morphologische Untersuchungen bekräftigt, während neuere morphologische und molekulargenetische Studien eher die Hypothese stützen, dass Testudines diapside Amnioten sind. In dieser Studie untersuchen wir die Stellung der Testudines mittels vollständiger cDNA-Sequenzen des polypeptiden Prohormons Proopiomelanocortin (POMC). Da nur lebende Taxa verwendet werden, können nur folgende Hypothesen getestet werden: 1) Testudines ist das Schwestertaxon der Archosauria, 2) Testudines sind in Archosauria enthalten und somit das Schwestertaxon der Crocodilia, 3) Testudines sind das Schwestertaxon der Lepidosauria, 4) Testudines sind das Schwestertaxon der Sauria und 5) Testudines sind das Schwestertaxon einer monophyletischen Mammalia–Sauria Gruppe. Weder Maximum-Likelihood, Bayesian oder Maximale Parsimony Analysen waren in der Lage, die Hypothese (Archosauria (Lepidosauria, Testudines)) zu falsifizieren, sodass diese die bevorzugte Folgerung aus den POMC Daten darstellt. Supporting Information Table S1. POMC cDNA and Amino Acid Sequences from GenBank. Table S2. Partitioning schemes used for Bayesian analysis and the model of nucleotide evolution selected for each partition. Table S3. Percentage of trees supporting alternative hypotheses for the placement of Testudines among amniotes produced by the Bayesian analysis of each partitioning scheme. Table S4. The harmonic mean of the Ln likelihood of the 45,000 trees produced and sampled for each Bayesian partitioning scheme of POMC cDNA, and the Ln Bayes factors calculated by Tracer v1.4 for each partitioning scheme of POMC cDNA. Table S5. 2Ln Bayes factors for calculated for each Bayesian partitioning scheme of POMC cDNA. Table S6. The number of characters, variable characters, and parsimony informative characters present in each partition of the six partitioning schemes used during Bayesian analysis of the Proopiomelanocortin (POMC) gene. Table S7. Interpretations of 2Ln Bayes factors as modified from Kass and Raftery (1995) by Nylander et al. (2004). Filename Description JZS_589_sm_Table_S1-7.doc146.5 KB Supporting info item Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article. References deBraga M, Rieppel O (1997) Reptile phylogeny and the interrelationships of turtles. Zool J Linn Soc 120: 281–354. 10.1111/j.1096-3642.1997.tb01280.x Web of Science®Google Scholar Brandley MC, Schmitz A, Reeder TW (2005) Partitioned Bayesian analyses, partition choice, and the phylogenetic relationships of scincid lizards. Syst Biol 54: 373–390. 10.1080/10635150590946808 PubMedWeb of Science®Google Scholar Bremer K (1988) The limits of amino acid sequence data in angiosperm phylogenetic reconstruction. Evolution 42: 795–803. 10.2307/2408870 CASPubMedWeb of Science®Google Scholar Burnham KP, Anderson DR (1998) Model selection and Multimodel Inference: A Practical Information-theoretic Approach. Springer-Verlag, New York. 10.1007/978-1-4757-2917-7 Google Scholar Cao Y, Sorenson MD, Kumazawa Y, Mindell DP, Hasegawa M (2000) Phylogenetic position of turtles among amniotes: evidence from mitochondrial and nuclear genes. Gene 259: 139–148. 10.1016/S0378-1119(00)00425-X CASPubMedWeb of Science®Google Scholar Castoe TA, Parkinson CL (2006) Bayesian mixed models and the phylogeny of pitvipers (Viperidae:Serpentes). Mol Phylogenet Evol 39: 91–110. 10.1016/j.ympev.2005.12.014 PubMedWeb of Science®Google Scholar Castoe TA, Doan TM, Parkinson CL (2004) Data partitions and complex models in Bayesian analysis: the phylogeny of gymnophthalmid lizards. Syst Biol 53: 448–469. 10.1080/10635150490445797 PubMedWeb of Science®Google Scholar Cunningham CW, Zuh H, Hillis DM (1998) Best-fit maximum likelihood models for phylogenetic inference: empirical tests with known phylogenies. Evolution 52: 978–987. 10.1111/j.1558-5646.1998.tb01827.x CASPubMedWeb of Science®Google Scholar Danielson PB, Dores RM (1999) Molecular evolution of the opioid/orphanin gene family. Gen Comp Endocrinol 113: 169–186. 10.1006/gcen.1998.7206 CASPubMedWeb of Science®Google Scholar Dores RM (1990) The proopiomelanocortin family. Prog Clin Biol Res 342: 22–27. CASPubMedWeb of Science®Google Scholar Dores RM, Rubin DA, Quinn TW (1996) Is it possible to construct phylogenetic trees using polypeptide hormone sequences? Gen Comp Endocrinol 103: 1–12. 10.1006/gcen.1996.0088 CASPubMedWeb of Science®Google Scholar Dores RM, Sollars C, Danielson P, Lee J, Alrubanian J, Joss JMP (1999) Cloning of a POMC cDNA from the Pituitary of the Australian Lungfish, Neoceratodus forsteri: Analyzing Trends in the Organization of the Prohormone Precursor, Proopiomelanocortin. Gen Comp Endocrinol 116: 433–444. 10.1006/gcen.1999.7382 CASPubMedWeb of Science®Google Scholar Eernisse DJ, Kluge AG (1993) Taxonomic congruence versus total evidence, and Amniote phylogeny inferred from fossils, molecules, and morphology. Mol Biol Evol 10: 1170–1195. CASPubMedWeb of Science®Google Scholar Gaffney ES (1980) Phylogenetic relationships of the major groups of amniotes. In: AL Panchen (ed.), The Terrestrial Environment and The Origin of Land Vertebrates. Academic Press, London, pp 593–610. Google Scholar Gauthier J, Kluge AG, Rowe T (1988a) The early evolution of the amniota. In: MJ Benton (ed.), The Phylogeny and Classification of the Tetrapods. Clarendon Press, Oxford, pp 103–153. Google Scholar Gauthier J, Kluge AG, Rowe T (1988b) Amniote phylogeny and the importance of fossils. Cladistics 4: 105–209. 10.1111/j.1096-0031.1988.tb00514.x PubMedWeb of Science®Google Scholar Giribet G (2001) Exploring the behavior of POY, a program for direct optimization of molecular data. Cladistics 17: S60–S70. 10.1111/j.1096-0031.2001.tb00105.x CASPubMedGoogle Scholar Giribet G, Wheeler WC (1999) On gaps. Mol Phylogenet Evol 13: 132–143. 10.1006/mpev.1999.0643 CASPubMedWeb of Science®Google Scholar Grant T, Kluge AG (2004) Transformation series as an ideographic character concept. Cladistics 20: 23–31. 10.1111/j.1096-0031.2004.00003.x PubMedWeb of Science®Google Scholar Gregory WK (1946) Pareiasaurs versus placodonts as near ancestors to turtles. Bull Am Mus Nat Hist 86: 275–326. Web of Science®Google Scholar Hedges SB (1994) Molecular evidence for the origin of birds. Proc Natl Acad Sci USA 91: 2621–2624. 10.1073/pnas.91.7.2621 CASPubMedWeb of Science®Google Scholar Hedges SB, Poling LL (1999) A molecular phylogeny of reptiles. Science 283: 998–1001. 10.1126/science.283.5404.998 CASPubMedWeb of Science®Google Scholar Hill RV (2005) Integration of morphological data sets for phylogenetic analysis of Amniota: the importance of integumentary characters and increased taxonomic sampling. Syst Biol 54: 530–547. 10.1080/10635150590950326 PubMedGoogle Scholar Hillis DM, Bull JJ (1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst Biol 42: 182–192. 10.1093/sysbio/42.2.182 Web of Science®Google Scholar Hillis DM, Pollack DD, McGuire JA, Zwickl DJ (2003) Is sparse taxon sampling a problem for phylogenetic inference? Syst Biol 52: 124–126. 10.1080/10635150390132911 PubMedWeb of Science®Google Scholar Huelsenbeck JP, Rannala B (2004) Frequentist properties of Bayesian posterior probabilities of phylogenetic trees under simple and complex substitution models. Syst Biol 53: 904–913. 10.1080/10635150490522629 PubMedWeb of Science®Google Scholar Iwabe N, Hara Y, Kumazawa Y, Shibamoto K, Saito Y, Miyata T, Katoh K (2005) Sister group relationship of turtles to the Bird-Crocodilian clade revealed by nuclear DNA-coded proteins. Mol Biol Evol 22: 810–813. 10.1093/molbev/msi075 CASPubMedWeb of Science®Google Scholar Kass RE, Raftery AE (1995) Bayes factors. J Am Stat Assoc 90: 773–795. 10.1080/01621459.1995.10476572 Web of Science®Google Scholar Kluge AG (2007) Completing the neo-Darwinian synthesis with an event criterion. Cladistics 23: 613–633. 10.1111/j.1096-0031.2007.00165.x Web of Science®Google Scholar Kumazawa Y, Nishida M (1999) Complete mitochondrial DNA sequences of the green turtle and blue-tailed mole skink: statistical evidence for archosaurian affinity of turtles. Mol Biol Evol 16: 784–792. 10.1093/oxfordjournals.molbev.a026163 CASPubMedWeb of Science®Google Scholar Lanyon SM (1985) Detecting internal inconsistencies in distance data. Syst Zool 34: 397–403. 10.2307/2413204 Web of Science®Google Scholar Laurin M, Resiz RR (1995) A reevaluation of early amniote phylogeny. Zool J Linn Soc 113: 165–223. 10.1111/j.1096-3642.1995.tb00932.x Web of Science®Google Scholar Lee MSY (1993) The origin of the turtle body plan: bridging a famous morphological gap. Science 261: 1716–1720. 10.1126/science.261.5129.1716 CASPubMedWeb of Science®Google Scholar Lee MSY (1997) Pareiasaur phylogeny and the origin of turtles. Zool J Linn Soc 120: 197–280. 10.1111/j.1096-3642.1997.tb01279.x Web of Science®Google Scholar Lemmon AR, Moriarty EC (2004) The importance of proper model assumption in Bayesian phylogenetics. Syst Biol 53: 265–277. 10.1080/10635150490423520 PubMedWeb of Science®Google Scholar Maddison WP, Maddison DR (2003) MacClade4 v. 4.06. Sinauer Associates, Sunderland. Google Scholar Mannen H, Li SS-L (1999) Molecular evidence for a clade of turtles. Mol Phylogenet Evol 13: 144–148. 10.1006/mpev.1999.0640 CASPubMedWeb of Science®Google Scholar Meyer A, Zardoya R (2003) Recent advances in the (molecular) phylogeny of vertebrates. Ann Rev Ecol Evol Syst 34: 311–338. 10.1146/annurev.ecolsys.34.011802.132351 Web of Science®Google Scholar Nylander JAA, Ronquist F, Huelsenbeck JP, Nieves-Aldrey JL (2004) Bayesian phylogenetic analysis of combined data. Syst Biol 53: 47–67. 10.1080/10635150490264699 PubMedWeb of Science®Google Scholar Ogden TH, Rosenberg MS (2007) How should gaps be treated in parsimony? A comparison of approaches using simulation. Mol Phylogenet Evol 42: 817–826. 10.1016/j.ympev.2006.07.021 CASPubMedWeb of Science®Google Scholar Posada D, Buckley TR (2004) Model selection and model averaging in phylogenetics: advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests. Syst Biol 53: 793–808. 10.1080/10635150490522304 CASPubMedWeb of Science®Google Scholar Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14: 817–818. 10.1111/j.1095-8312.2004.00368.x CASPubMedWeb of Science®Google Scholar Posada D, Crandall KA (2001) Selecting the best-fit model of nucleotide substitution. Syst Biol 50: 580–601. 10.1080/106351501750435121 CASPubMedWeb of Science®Google Scholar Reisz RR (1997) The origin and early evolutionary history of amniotes. Trends Ecol Evol 12: 218–222. 10.1016/S0169-5347(97)01060-4 CASPubMedWeb of Science®Google Scholar Reisz RR, Laurin M (1991) Owenetta and the origin of turtles. Nature 349: 324–326. 10.1038/349324a0 Web of Science®Google Scholar Rest JS, Ast JC, Austin CC, Waddell PJ, Tibbetts EA, Hay JM, Mindell DP (2003) Molecular systematic of primary reptilian lineages and the tuatara mitochondrial genome. Mol Phylogenet Evol 29: 289–297. 10.1016/S1055-7903(03)00108-8 CASPubMedWeb of Science®Google Scholar Rieppel O, deBraga M (1996) Turtles as diapsid reptiles. Nature 384: 453–455. 10.1038/384453a0 CASWeb of Science®Google Scholar Rieppel O, Reisz RR (1999) The origin and early evolution of turtles. Annu Rev Ecol Syst 30: 1–22. 10.1146/annurev.ecolsys.30.1.1 Web of Science®Google Scholar Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574. 10.1111/j.0908-8857.2004.03297.x CASPubMedWeb of Science®Google Scholar Shoureshi P, Baron A, Szynskie L, Dores RM (2007) Analyzing the evolution of beta-endorphin post-translational processing events: studies on reptiles. Gen Comp Endocrinol 153: 148–154. 10.1016/j.ygcen.2007.01.002 CASPubMedWeb of Science®Google Scholar Siddall ME (1995) Another monophyly index: revisiting the jackknife. Cladistics 11: 33–56. 10.1111/j.1096-0031.1995.tb00003.x PubMedWeb of Science®Google Scholar Simmons MP, Ochoterena H (2000) Gaps as characters in sequence-based phylogenetic analyses. Syst Biol 49: 369–381. 10.1093/sysbio/49.2.369 CASPubMedWeb of Science®Google Scholar Simmons MP, Ochoterena H, Carr TG (2001) Incorporation, relative homoplasy, and effect of gap characters in sequence-based phylogenetic analyses. Syst Biol 50: 454–462. 10.1080/106351501300318049 CASPubMedWeb of Science®Google Scholar Sorenson MD, Franzosa E (2007) TreeRot, Version 3. Boston University, Boston. Google Scholar Swofford DL (2002) PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer Associates, Sunderland. Google Scholar Varón A, Vinh LS, Bomash I, Wheeler WC (2008) POY 4.0 Beta 2602. American Museum of Natural History, New York. http://research.amnh.org/scicomp/projects/poy.php . Google Scholar Weisrock DW, Shaffer HB, Storz BL, Storz SR, Voss SR (2006) Multiple nuclear gene sequences identify phylogenetic species boundaries in the rapidly radiating clade of Mexican ambystomatid salamanders. Mol Ecol 15: 2489–2503. 10.1111/j.1365-294X.2006.02961.x CASPubMedWeb of Science®Google Scholar Werneburg I, Sánchez-Villagra MR (2009) Timing of organogenesis support basal position of turtles in the amniote tree of life. BMC Evol Biol 9: 82. 10.1186/1471-2148-9-82 PubMedWeb of Science®Google Scholar Wheeler WC (1996) Optimization alignment: the end of multiple sequence alignment in phylogenetics? Cladistics 12: 1–9. 10.1111/j.1096-0031.1996.tb00189.x Web of Science®Google Scholar Wiens JJ, Servedio MR (1998) Phylogenetic analysis and intraspecific variation: performance of parsimony, likelihood, and distance methods. Syst Biol 47: 228–253. 10.1080/106351598260897 CASPubMedWeb of Science®Google Scholar Yang Z (1996) Maximum likelihood models for combined analyses of multiple sequence data. J Mol Evol 42: 587–596. 10.1007/BF02352289 CASPubMedWeb of Science®Google Scholar Zardoya R, Meyer A (1998) Complete mitochondrial genome suggests diapsid affinities of turtles. Proc Natl Acad Sci USA 95: 14226–14231. 10.1073/pnas.95.24.14226 CASPubMedWeb of Science®Google Scholar Zwickl DJ (2006) Genetic Algorithm Approaches for The Phylogenetic Analysis of Large Biological Sequence Datasets Under The Maximum Likelihood Criterion. Ph.D. dissertation, The University of Texas, Austin. 10.1006/mpev.1999.0713 CASPubMedWeb of Science®Google Scholar Citing Literature Volume49, Issue2May 2011Pages 148-159 ReferencesRelatedInformation

Referência(s)