Do grazers alter nitrogen dynamics on grazing lawns in a South African savannah?
2010; Wiley; Volume: 49; Issue: 1 Linguagem: Inglês
10.1111/j.1365-2028.2010.01236.x
ISSN1365-2028
AutoresCorli Coetsee, William D. Stock, Joseph M. Craine,
Tópico(s)Horticultural and Viticultural Research
ResumoAfrican Journal of EcologyVolume 49, Issue 1 p. 62-69 Do grazers alter nitrogen dynamics on grazing lawns in a South African savannah? Corli Coetsee, Corresponding Author Corli Coetsee Department of Botany, University of Cape Town, Rondebosch 7701, South Africa School of Natural Resource Management, Nelson Mandela Metropolitan University, George 6530, South Africa*Correspondence: E-mail: [email protected]; [email protected]Search for more papers by this authorWilliam D. Stock, William D. Stock Department of Botany, University of Cape Town, Rondebosch 7701, South Africa Centre for Ecosystem Management, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, AustraliaSearch for more papers by this authorJoseph M. Craine, Joseph M. Craine Division of Biology, Kansas State University, Manhattan, KS 66506, U.S.A.Search for more papers by this author Corli Coetsee, Corresponding Author Corli Coetsee Department of Botany, University of Cape Town, Rondebosch 7701, South Africa School of Natural Resource Management, Nelson Mandela Metropolitan University, George 6530, South Africa*Correspondence: E-mail: [email protected]; [email protected]Search for more papers by this authorWilliam D. Stock, William D. Stock Department of Botany, University of Cape Town, Rondebosch 7701, South Africa Centre for Ecosystem Management, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, AustraliaSearch for more papers by this authorJoseph M. Craine, Joseph M. Craine Division of Biology, Kansas State University, Manhattan, KS 66506, U.S.A.Search for more papers by this author First published: 14 September 2010 https://doi.org/10.1111/j.1365-2028.2010.01236.xCitations: 37Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstracten The presence of grazers on grazing lawns in East Africa and North America often alters nitrogen cycling and availability. Grazing lawns can be defined as areas where grasses are kept in a short, actively growing, palatable state by the action of grazers. Our aim was to test whether lawns have enhanced leaf nitrogen (N) concentrations, total soil N and δ15N when compared to tall grass areas in a South African savannah. Previous studies have used ecosystem δ15N as a proxy of N availability, and enriched δ15N values have been suggested to indicate higher N availability or higher N transformation rates. Across all sites, foliar N concentrations (but not soil N) were higher when compared to tall grass areas, and evidence of enriched foliar and soil δ15N values was found on the lawns. These results suggest that grazers may be involved in altering the rates of N transformations directly on grazing lawns. Regardless of whether these N transformations included increased net N mineralization, higher N concentrations in above-ground foliage attract grazers back to the lawns, encouraging their maintenance. Résuméfr La présence de brouteurs sur les pâturages « grazing lawns » d'Afrique de l'Est et d'Amérique du Nord modifie souvent le cycle et la disponibilité de l'azote. On peut définir ces grazing lawns comme des endroits où l'herbe est maintenue courte et nutritive, en croissance active, sous l'action du broutage. Notre but était de tester si ces lawns avaient des concentrations plus fortes en azote (N) dans les feuilles, et en azote total N et en δ15N dans le sol, par comparaison avec les zones de hautes herbes d'une savane d'Afrique du Sud. Des études antérieures ont utilisé le δ15N de l'écosystème comme proxy pour la disponibilité en azote, et on a suggéré que des valeurs supérieures de δ15N indiquaient une plus grande disponibilité en azote ou un taux plus élevé de transformation de l'azote. Dans tous les sites, la concentration foliaire en azote (mais pas l'azote du sol) était supérieure à celle des zones d'herbes hautes, et l'on a trouvé des preuves de valeurs de δ15N enrichies dans les feuilles et le sol de ces prairies. Ces résultats laissent penser que les herbivores peuvent être directement impliqués dans la modification du taux de la transformation de l'azote dans les grazing lawns. Que ces transformations incluent ou non une plus forte minéralisation nette en azote, de plus hautes concentrations d'azote dans les feuilles aériennes attirent les herbivores vers les lawns, ce qui favorise leur maintien. References Aranibar, J.N., Anderson, I.C., Epstein, H.E., Feral, C.J.W., Swap, R.J., Ramontsho, J. & Macko, S.A. (2008) Nitrogen isotope composition of soils, C3 and C4 plants along land use gradients in southern Africa. J. Arid Environ. 72, 326–337. Archibald, S. (2008) African grazing lawns – how fire, rainfall and grazer numbers interact to affect grass community states. J. Wildl. Manage. 72, 492–501. Archibald, S., Bond, W.J., Stock, W.D. & Fairbanks, D.H.K. (2005) Shaping the landscape: Fire–Grazer interactions in an African savanna. Ecol. Appl. 15, 96–109. Augustine, D.J. & Frank, D.A. (2001) Effects of migratory grazers on spatial heterogeneity of soil nitrogen properties in a grassland ecosystem. Ecology 82, 3149–3162. Augustine, D.J. & McNaughton, S.J. (2006) Interactive effects of ungulate herbivores, soil fertility, and variable rainfall on ecosystem processes in a semi-arid savanna. Ecosystems 9, 1242–1256. Augustine, D.J., McNaughton, S.J. & Frank, D.A. (2003) Feedbacks between nutrients and large herbivores in a managed savanna-ecosystem. Ecol. Appl. 13, 1325–1337. Austin, A.T., Yahdjian, L., Stark, J.M., Belnap, J., Porporato, A., Norton, U., Ravetta, D.A. & Schaeffer, S.M. (2004) Water pulses and biochemical cycles in arid and semiarid ecosystems. Oecologia 141, 221–235. Balfour, D.A. & Howison, O.E. (2001) Spatial and temporal variation in a mesic savanna fire regime: responses to variation in annual rainfall. Afr. J. Range For. Sci. 19, 45–53. Basirirad, H., Constable, J.V.H., Lussenhop, J., Kimball, B.A., Norby, R.J., Oechel, W.C., Reich, P.B., Schlesinger, W.H., Zitzer, W.H., Sehtiya, H.L. & Silim, S. (2003) Widespread foliage δ15N depletion under elevated CO2: inferences for the nitrogen cycle. Glob. Chang. Biol. 9, 1582–1590. Bell, R.H.V. (1970) The use of the herb layer by grazing ungulates in the Serengeti. In: Animal Populations in Relation to Their Food Resources (Ed. A. WATSON). Blackwell Scientific Publications, Oxford, U.K. Birch, H.F. (1960) Nitrification in soils after different periods of dryness. Plant Soil 12, 81–96. Bond, W.J. & Archibald, S. (2003) Confronting complexity: fire policy choices in South African savanna parks. Int. J. Wildland Fire 12, 381–389. Codron, J., Codron, D., Lee-Thorp, J.A., Sponheimer, M., Bond, W.J., De Ruiter, D. & Grant, R. (2005) Taxonomic, anatomical, and spatio-temporal variations in the stable carbon and nitrogen isotopic compositions of plants from an African savanna. J. Archaeol. Sci. 32, 1757–1772. Cook, G.D. (2001) Effects of frequent fires and grazing on stable nitrogen isotope ratios of vegetation in northern Australia. Austral Ecol. 26, 630–636. Craine, J., Ballantyne, F., Peel, M., Zambatis, N., Morrow, C. & Stock, W. (2009a) Grazing and landscape controls on nitrogen availability across 330 South African savanna sites. Austral Ecol. 34, 731–740. Craine, J.M., Elmore, A.J., Aidar, M.P.M., Bustamante, M., Dawson, T.E., Hobbie, A.E., Kahmen, A., Mack, M.C., Mclauchlan, K.K., Michelsen, A., Nardoto, G.B., Pardo, L.H., Peñuelas, J., Reich, P.B., Schuur, E.A., Stock, W.D., Templer, P.H., Virginia, R.A., Welker, J.M. & Wright, I.J. (2009b) Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytol. 183, 980–992. Cromsigt, J.P.G.M. & Olff, H. (2008) Dynamics of grazing lawn formation: an experimental test of the role of scale-dependent processes. Oikos 117, 1444–1452. Frank, D.A. (1998) Ungulate regulation of ecosystem processes, in Yellowstone National Park: direct and feedback effects. Wildl. Soc. Bull. 26, 410–418. Frank, D.A. & Evans, R.D. (1997) Effects of native grazers on grassland N cycling in Yellowstone National Park. Ecology 78, 2238–2248. Frank, D.A., Evans, R.D. & Tracy, B.F. (2004) The role of ammonia volatilization in controlling the natural abundance of a grazed grassland. Biogeochemistry 68, 169–178. Frank, D.A. & Zhang, Y. (1997) Ammonia volatilization from a seasonally and spatially variable grazed grassland: Yellowstone National Park. Biogeochemistry 36, 189–203. Frank, D.A., Inouye, R.S., Huntly, N., Minshall, G.W. & Anderson, J.E. (1994) The biogeochemistry of a north-temperate grassland with the native ungulates: Nitrogen dynamics in Yellowstone national Park. Biogeochemistry 26, 163–188. Frank, D.A., Groffman, P.M., Evans, R.D. & Tracy, B.F. (2000) Ungulate stimulation of nitrogen cycling and retention in Yellowstone Park grasslands. Oecologia 123, 116–121. Garten, C.T. Jr & Van Miegroet, H. (1993) Relationships between soil nitrogen and natural 15N abundance in plant foliage from Great Smoky Mountains National Park. Can. J. For. Res. 24, 1636–1645. Hamilton, E.W. Iii, Frank, D.A., Hinchey, P.M. & Murray, T.R. (2008) Defoliation induces root exudation and triggers positive rhizospheric feedbacks in temperate grassland. Soil Biol. Biochem. 40, 2865–2873. Handley, L.L. & Scrimgeour, C. (1997) Terrestrial plant ecology and 15N natural abundance: the present limits to interpretation for uncultivated systems with original data from a Scottish old field. Adv. Ecol. Res. 27, 133–212. Handley, L.L., Austin, A.T., Robinson, D., Scrimgeour, C.M., Raven, J.A., Heaton, H.T.E., Schmidt, S. & Stewart, G.R. (1999) The 15-N natural abundance (δ15N) of ecosystem samples reflects measures of water availability. Aust. J. Plant Physiol. 26, 185–199. Hobbie, E.A., Macko, S.A. & Williams, M. (2000) Correlations between foliar δ15N and nitrogen concentrations may indicate plant–mycorrhizal interactions. Oecologia 122, 273–283. Hobbs, N.T. (1996) Modification of ecosystems by ungulates. J. Wildl. Manage. 60, 695–713. Högberg, P. (1997) δ15N natural abundance in soil-plant systems. New Phytol. 137, 179–203. Holland, E.A. & Detling, J.K. (1990) Plant response to herbivory and below-ground nitrogen cycling. Ecology 71, 1040–1049. Ilmarinen, K., Mikola, J. & Vestberg, M. (2008) Do interactions with soil organisms mediate grass responses to defoliation? Soil Biol. Biochem. 40, 894–905. Johnson, L.C. & Matchett, J.R. (2001) Fire and grazing regulate below-ground processes in tallgrass prairie. Ecology 82, 3377–3389. Koba, K., Hirobe, M., Koyama, L., Kohzu, A., Tokuchi, H., Nadelhoffer, K.J., Wada, E. & Takeda, H. (2003) Natural 15N abundance of plants and soil in temperate coniferous forest. Ecosystems 6, 457–469. McNaughton, S.J. (1984) Grazing lawns: animals in herds, plant form and coevolution. Am. Nat. 124, 863–886. McNaughton, S.J. (1985) Ecology of a grazing ecosystem: The Serengeti. Ecol. Monogr. 55, 259–294. McNaughton, S.J. (1992) Laboratory-simulated grazing: interactive effects of defoliation and canopy closure on Serengeti grasses. Ecology 73, 170–182. Mucina, L. & Rutherford, M.C. (2006) The Vegetation of South Africa, Lesotho and Swaziland. Strelitzia 19. South African National Biodiversity Institute, Pretoria. Owen-Smith, N. (1988) Megaherbivores: The Influence of Very Large Body Size on Ecology. Cambridge University Press, Cambridge, pp. 226–245. Robinson, D. (2001) δ15N as an integrator of the nitrogen cycle. Trends Ecol. Evol. 16, 153–162. Ruess, R.W. & McNaughton, S.J. (1987) Grazing and the dynamics of nutrient and energy regulated microbial processes in the Serengeti grassland. Oikos 49, 101–110. Ruess, R.W. & Seagle, S.W. (1994) Landscape patterns in soil microbial processes in the Serengeti National Park, Tanzania. Ecology 75, 892–904. Schulze, E.-D., Williams, R.J., Farguhar, G.D., Schulze, W., Langridge, J., Miller, J.M. & Walker, B.H. (1998) Carbon and nitrogen discrimination and nitrogen nutrition of trees along a rainfall gradient in northern Australia. Aust. J. Plant Physiol. 25, 413–425. Seagle, S.W., McNaughton, S.J. & Ruess, R.W. (1992) Simulated effects of grazing on soil nitrogen and mineralisation in contrasting Serengeti grasslands. Ecology 73, 1105–1123. Spriggs, A.C., Stock, W.D. & Dakora, F.D. (2003) Influence of mycorrhizal association on foliar δ15N values of legume and non-legume shrubs and trees in the fynbos of South Africa: implications for estimating N2 fixation using the 15N natural abundance method. Plant Soil 255, 495–502. Stock, W.D., Bond, W.J. & Van De Vijver, C.D.A.M. (2010) Herbivore and nutrient control of lawn and bunch grass distributions in a southern African savanna. Plant Ecol. 206, 15–27. Stock, W.D. & Evans, J.R. (2006) Effects of water availability, nitrogen supply and atmospheric CO2 concentrations on plant nitrogen natural abundance values. Funct. Plant Biol. 33, 219–227. Taub, D.R. (2000) Climate and the U.S. distribution of C4 grass subfamilies and decarboxylation variants of C4 photosynthesis. Am. J. Bot. 87, 1211–1215. Tracy, B.F. & Frank, R.D. (1998) Herbivore influence on soil microbial biomass and nitrogen mineralisation in a northern grassland ecosystem: Yellowstone National Park. Oecologia 114, 556–562. Verweij, R.J.T., Verrelst, J., Loth, P.E., Heitkönig, I.M.A. & Brunsting, A.M.H. (2006) Grazing lawns contribute to the subsistence of mesoherbivores on dystrophic savannas. Oikos 114, 108–116. Vesey-Fitzgerald, D.F. (1960) Grazing succession among East African game animals. J. Mammal. 41, 161–172. Waldram, M.S., Bond, W.J. & Stock, W.D. (2007) Ecological engineering by a mega-grazer: White Rhino impacts on a South African savanna. Ecosystems 11, 101–112. Whateley, A. & Porter, R.N. (1983) The woody vegetation communities of the Hluhluwe–Corridor–iMfolozi Game Reserve Complex. Bothalia 14, 745–758. Citing Literature Volume49, Issue1March 2011Pages 62-69 ReferencesRelatedInformation
Referência(s)