MSIplus for Integrated Colorectal Cancer Molecular Testing by Next-Generation Sequencing
2015; Elsevier BV; Volume: 17; Issue: 6 Linguagem: Inglês
10.1016/j.jmoldx.2015.05.008
ISSN1943-7811
AutoresJennifer A. Hempelmann, Sheena M. Scroggins, Colin C. Pritchard, Stephen J. Salipante,
Tópico(s)Cancer Genomics and Diagnostics
ResumoMolecular analysis of colon cancers currently requires multiphasic testing that uses various assays with different performance characteristics, adding cost and time to patient care. We have developed a single, next-generation sequencing assay to simultaneously evaluate colorectal cancers for mutations in relevant cancer genes (KRAS, NRAS, and BRAF) and for tumor microsatellite instability (MSI). In a sample set of 61 cases, the assay demonstrated overall sensitivity of 100% and specificity of 100% for identifying cancer-associated mutations, with a practical limit of detection at 2% mutant allele fraction. MSIplus was 97% sensitive (34 of 35 MSI-positive cases) and 100% specific (42 of 42 MSI-negative cases) for ascertaining MSI phenotype in a cohort of 78 tumor specimens. These performance characteristics were slightly better than for conventional multiplex PCR MSI testing (97% sensitivity and 95% specificity), which is based on comparison of microsatellite loci amplified from tumor and matched normal material, applied to the same specimen cohort. Because the assay uses an amplicon sequencing approach, it is rapid and appropriate for specimens with limited available material or fragmented DNA. This integrated testing strategy offers several advantages over existing methods, including a lack of need for matched normal material, sensitive and unbiased detection of variants in target genes, and an automated analysis pipeline enabling principled and reproducible identification of cancer-associated mutations and MSI status simultaneously. Molecular analysis of colon cancers currently requires multiphasic testing that uses various assays with different performance characteristics, adding cost and time to patient care. We have developed a single, next-generation sequencing assay to simultaneously evaluate colorectal cancers for mutations in relevant cancer genes (KRAS, NRAS, and BRAF) and for tumor microsatellite instability (MSI). In a sample set of 61 cases, the assay demonstrated overall sensitivity of 100% and specificity of 100% for identifying cancer-associated mutations, with a practical limit of detection at 2% mutant allele fraction. MSIplus was 97% sensitive (34 of 35 MSI-positive cases) and 100% specific (42 of 42 MSI-negative cases) for ascertaining MSI phenotype in a cohort of 78 tumor specimens. These performance characteristics were slightly better than for conventional multiplex PCR MSI testing (97% sensitivity and 95% specificity), which is based on comparison of microsatellite loci amplified from tumor and matched normal material, applied to the same specimen cohort. Because the assay uses an amplicon sequencing approach, it is rapid and appropriate for specimens with limited available material or fragmented DNA. This integrated testing strategy offers several advantages over existing methods, including a lack of need for matched normal material, sensitive and unbiased detection of variants in target genes, and an automated analysis pipeline enabling principled and reproducible identification of cancer-associated mutations and MSI status simultaneously. After initial diagnosis, the molecular characterization of colorectal cancers may require several separate clinical tests. Evaluation of microsatellite instability (MSI) status is recommended testing on all primary colon cancers from patients 50 years or younger (and in older patients if specific pathological features are present1Jenkins M.A. Hayashi S. O'Shea A.M. Burgart L.J. Smyrk T.C. Shimizu D. Waring P.M. Ruszkiewicz A.R. Pollett A.F. Redston M. Barker M.A. Baron J.A. Casey G.R. Dowty J.G. Giles G.G. Limburg P. Newcomb P. Young J.P. Walsh M.D. Thibodeau S.N. Lindor N.M. Lemarchand L. Gallinger S. Haile R.W. Potter J.D. Hopper J.L. Jass J.R. Colon Cancer Family RegistryPathology features in Bethesda guidelines predict colorectal cancer microsatellite instability: a population-based study.Gastroenterology. 2007; 133: 48-56Abstract Full Text Full Text PDF PubMed Scopus (277) Google Scholar) to serve as a screening test for Lynch syndrome, a disease of hereditary cancer predisposition.2Beamer L.C. Grant M.L. Espenschied C.R. Blazer K.R. Hampel H.L. Weitzel J.N. MacDonald D.J. Reflex immunohistochemistry and microsatellite instability testing of colorectal tumors for Lynch syndrome among US cancer programs and follow-up of abnormal results.J Clin Oncol. 2012; 30: 1058-1063Crossref PubMed Scopus (172) Google Scholar, 3Vilar E. Gruber S.B. Microsatellite instability in colorectal cancer: the stable evidence.Nat Rev Clin Oncol. 2010; 7: 153-162Crossref PubMed Scopus (562) Google Scholar Moreover, MSI status provides diagnostic information about disease prognosis and predicted treatment response to fluorouracil,3Vilar E. Gruber S.B. Microsatellite instability in colorectal cancer: the stable evidence.Nat Rev Clin Oncol. 2010; 7: 153-162Crossref PubMed Scopus (562) Google Scholar, 4Ribic C.M. Sargent D.J. Moore M.J. Thibodeau S.N. French A.J. Goldberg R.M. Hamilton S.R. Laurent-Puig P. Gryfe R. Shepherd L.E. Tu D. Redston M. Gallinger S. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer.N Engl J Med. 2003; 349: 247-257Crossref PubMed Scopus (1798) Google Scholar, 5Goel A. Nagasaka T. Hamelin R. Boland C.R. An optimized pentaplex PCR for detecting DNA mismatch repair-deficient colorectal cancers.PLoS One. 2010; 5: e9393Crossref PubMed Scopus (121) Google Scholar, 6de la Chapelle A. Hampel H. Clinical relevance of microsatellite instability in colorectal cancer.J Clin Oncol. 2010; 28: 3380-3387Crossref PubMed Scopus (240) Google Scholar and can, therefore, directly inform patient care. In the case of metastatic disease, additional molecular testing beyond MSI status is indicated. Recently updated guidelines from the National Comprehensive Cancer Network recommend that extended NRAS and KRAS testing is performed on all stage IV cancers7NCCN Guidelines(R) Updates.J Natl Compr Canc Netw. 2013; 11: xxxii-xxxviPubMed Google Scholar to identify mutations conferring resistance to epidermal growth factor receptor inhibitors.8Plesec T.P. Hunt J.L. KRAS mutation testing in colorectal cancer.Adv Anat Pathol. 2009; 16: 196-203Crossref PubMed Scopus (88) Google Scholar, 9De Roock W. Claes B. Bernasconi D. De Schutter J. Biesmans B. Fountzilas G. et al.Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: a retrospective consortium analysis.Lancet Oncol. 2010; 11: 753-762Abstract Full Text Full Text PDF PubMed Scopus (1701) Google Scholar, 10Douillard J.Y. Oliner K.S. Siena S. Tabernero J. Burkes R. Barugel M. Humblet Y. Bodoky G. Cunningham D. Jassem J. Rivera F. Kocakova I. Ruff P. Blasinska-Morawiec M. Smakal M. Canon J.L. Rother M. Williams R. Rong A. Wiezorek J. Sidhu R. Patterson S.D. Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer.N Engl J Med. 2013; 369: 1023-1034Crossref PubMed Scopus (1689) Google Scholar If RAS gene mutational status is negative, testing for BRAF mutations is then also advised, given the poor response of BRAF-mutated tumors to cetuximab plus irinotecan, fluorouracil, and leucovorin combination therapy,11Van Cutsem E. Kohne C.H. Lang I. Folprecht G. Nowacki M.P. Cascinu S. Shchepotin I. Maurel J. Cunningham D. Tejpar S. Schlichting M. Zubel A. Celik I. Rougier P. Ciardiello F. Cetuximab plus irinotecan, fluorouracil, and leucovorin as first-line treatment for metastatic colorectal cancer: updated analysis of overall survival according to tumor KRAS and BRAF mutation status.J Clin Oncol. 2011; 29: 2011-2019Crossref PubMed Scopus (1500) Google Scholar and also to epidermal growth factor receptor inhibitors used beyond first-line treatment.12Di Nicolantonio F. Martini M. Molinari F. Sartore-Bianchi A. Arena S. Saletti P. De Dosso S. Mazzucchelli L. Frattini M. Siena S. Bardelli A. Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer.J Clin Oncol. 2008; 26: 5705-5712Crossref PubMed Scopus (1438) Google Scholar, 13Bokemeyer C. Van Cutsem E. Rougier P. Ciardiello F. Heeger S. Schlichting M. Celik I. Kohne C.H. Addition of cetuximab to chemotherapy as first-line treatment for KRAS wild-type metastatic colorectal cancer: pooled analysis of the CRYSTAL and OPUS randomised clinical trials.Eur J Cancer. 2012; 48: 1466-1475Abstract Full Text Full Text PDF PubMed Scopus (444) Google Scholar Independent molecular assays are currently used to test tumor specimens for MSI status and gene mutations. Molecular diagnosis of MSI is implemented using multiplexed PCR-based MSI testing (MSI-PCR), wherein a limited number of informative microsatellite markers14Boland C.R. Thibodeau S.N. Hamilton S.R. Sidransky D. Eshleman J.R. Burt R.W. Meltzer S.J. Rodriguez-Bigas M.A. Fodde R. Ranzani G.N. Srivastava S. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer.Cancer Res. 1998; 58: 5248-5257PubMed Google Scholar, 15Umar A. Boland C.R. Terdiman J.P. Syngal S. de la Chapelle A. Ruschoff J. Fishel R. Lindor N.M. Burgart L.J. Hamelin R. Hamilton S.R. Hiatt R.A. Jass J. Lindblom A. Lynch H.T. Peltomaki P. Ramsey S.D. Rodriguez-Bigas M.A. Vasen H.F. Hawk E.T. Barrett J.C. Freedman A.N. Srivastava S. Revised Bethesda Guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability.J Natl Cancer Inst. 2004; 96: 261-268Crossref PubMed Scopus (2461) Google Scholar are PCR amplified from tumor and matched normal material, products are resolved using capillary gel electrophoresis, and the presence of additional alleles, which are the hallmark of the MSI phenotype, is qualitatively ascertained.5Goel A. Nagasaka T. Hamelin R. Boland C.R. An optimized pentaplex PCR for detecting DNA mismatch repair-deficient colorectal cancers.PLoS One. 2010; 5: e9393Crossref PubMed Scopus (121) Google Scholar, 6de la Chapelle A. Hampel H. Clinical relevance of microsatellite instability in colorectal cancer.J Clin Oncol. 2010; 28: 3380-3387Crossref PubMed Scopus (240) Google Scholar, 16Bacher J.W. Flanagan L.A. Smalley R.L. Nassif N.A. Burgart L.J. Halberg R.B. Megid W.M. Thibodeau S.N. Development of a fluorescent multiplex assay for detection of MSI-High tumors.Dis Markers. 2004; 20: 237-250Crossref PubMed Scopus (195) Google Scholar In some cases, immunohistochemical (IHC) detection of mismatch repair-pathway protein loss may additionally or alternatively be performed,17Lindor N.M. Burgart L.J. Leontovich O. Goldberg R.M. Cunningham J.M. Sargent D.J. Walsh-Vockley C. Petersen G.M. Walsh M.D. Leggett B.A. Young J.P. Barker M.A. Jass J.R. Hopper J. Gallinger S. Bapat B. Redston M. Thibodeau S.N. Immunohistochemistry versus microsatellite instability testing in phenotyping colorectal tumors.J Clin Oncol. 2002; 20: 1043-1048Crossref PubMed Scopus (692) Google Scholar, 18Shia J. Immunohistochemistry versus microsatellite instability testing for screening colorectal cancer patients at risk for hereditary nonpolyposis colorectal cancer syndrome, part I: the utility of immunohistochemistry.J Mol Diagn. 2008; 10: 293-300Abstract Full Text Full Text PDF PubMed Scopus (473) Google Scholar, 19Zhang L. Immunohistochemistry versus microsatellite instability testing for screening colorectal cancer patients at risk for hereditary nonpolyposis colorectal cancer syndrome, part II: the utility of microsatellite instability testing.J Mol Diagn. 2008; 10: 301-307Abstract Full Text Full Text PDF PubMed Scopus (158) Google Scholar although some studies suggest that IHC does not sensitively identify all MSI-positive tumors.17Lindor N.M. Burgart L.J. Leontovich O. Goldberg R.M. Cunningham J.M. Sargent D.J. Walsh-Vockley C. Petersen G.M. Walsh M.D. Leggett B.A. Young J.P. Barker M.A. Jass J.R. Hopper J. Gallinger S. Bapat B. Redston M. Thibodeau S.N. Immunohistochemistry versus microsatellite instability testing in phenotyping colorectal tumors.J Clin Oncol. 2002; 20: 1043-1048Crossref PubMed Scopus (692) Google Scholar, 20Müller A. Giuffre G. Edmonston T.B. Mathiak M. Roggendorf B. Heinmöller E. Brodegger T. Tuccari G. Mangold E. Buettner R. Rüschoff J. German HNPCC Consortium German Cancer Aid (Deutsche Krebshife)Challenges and pitfalls in HNPCC screening by microsatellite analysis and immunohistochemistry.J Mol Diagn. 2004; 6: 308-315Abstract Full Text Full Text PDF PubMed Scopus (48) Google Scholar In contrast, clinical testing for NRAS, KRAS, and BRAF gene mutations is commonly achieved using single-gene assays using melting curve analysis,21Ikenoue T. Hikiba Y. Kanai F. Ijichi H. Togo G. Ohta M. Watabe H. Yamaji Y. Okamoto M. Aragaki J. Matsumura M. Kawabe T. Omata M. Rapid detection of mutations in the BRAF gene using real-time polymerase chain reaction and melting curve analysis.Cancer Genet Cytogenet. 2004; 149: 68-71Abstract Full Text Full Text PDF PubMed Scopus (15) Google Scholar, 22Nikiforova M.N. Lynch R.A. Biddinger P.W. Alexander E.K. Dorn 2nd, G.W. Tallini G. Kroll T.G. Nikiforov Y.E. RAS point mutations and PAX8-PPAR gamma rearrangement in thyroid tumors: evidence for distinct molecular pathways in thyroid follicular carcinoma.J Clin Endocrinol Metab. 2003; 88: 2318-2326Crossref PubMed Scopus (583) Google Scholar real-time PCR,23Sakai K. Yoneshige A. Ito A. Ueda Y. Kondo S. Nobumasa H. Fujita Y. Togashi Y. Terashima M. De Velasco M.A. Tomida S. Nishio K. Performance of a novel KRAS mutation assay for formalin-fixed paraffin embedded tissues of colorectal cancer.Springerplus. 2015; 4: 7Crossref PubMed Scopus (9) Google Scholar, 24Qu K. Pan Q. Zhang X. Rodriguez L. Zhang K. Li H. Ho A. Sanders H. Sferruzza A. Cheng S.M. Nguyen D. Jones D. Waldman F. Detection of BRAF V600 mutations in metastatic melanoma: comparison of the Cobas 4800 and Sanger sequencing assays.J Mol Diagn. 2013; 15: 790-795Abstract Full Text Full Text PDF PubMed Scopus (44) Google Scholar or conventional Sanger sequencing.24Qu K. Pan Q. Zhang X. Rodriguez L. Zhang K. Li H. Ho A. Sanders H. Sferruzza A. Cheng S.M. Nguyen D. Jones D. Waldman F. Detection of BRAF V600 mutations in metastatic melanoma: comparison of the Cobas 4800 and Sanger sequencing assays.J Mol Diagn. 2013; 15: 790-795Abstract Full Text Full Text PDF PubMed Scopus (44) Google Scholar Peptide nucleic acid clamping25Oh J.E. Lim H.S. An C.H. Jeong E.G. Han J.Y. Lee S.H. Yoo N.J. Detection of low-level KRAS mutations using PNA-mediated asymmetric PCR clamping and melting curve analysis with unlabeled probes.J Mol Diagn. 2010; 12: 418-424Abstract Full Text Full Text PDF PubMed Scopus (50) Google Scholar or selective amplification of mutant alleles is sometimes used to improve sensitivity.26Pritchard C.C. Akagi L. Reddy P.L. Joseph L. Tait J.F. COLD-PCR enhanced melting curve analysis improves diagnostic accuracy for KRAS mutations in colorectal carcinoma.BMC Clin Pathol. 2010; 10: 6Crossref PubMed Scopus (27) Google Scholar, 27Li J. Wang L. Mamon H. Kulke M.H. Berbeco R. Makrigiorgos G.M. Replacing PCR with COLD-PCR enriches variant DNA sequences and redefines the sensitivity of genetic testing.Nat Med. 2008; 14: 579-584Crossref PubMed Scopus (319) Google Scholar, 28Westwood M. van Asselt T. Ramaekers B. Whiting P. Joore M. Armstrong N. Noake C. Ross J. Severens J. Kleijnen J. KRAS mutation testing of tumours in adults with metastatic colorectal cancer: a systematic review and cost-effectiveness analysis.Health Technol Assess. 2014; 18: 1-132Crossref Scopus (29) Google Scholar Next-generation sequencing (NGS) is becoming increasingly used by clinical laboratories as a cost-effective and scalable method to interrogate multiple genetic targets in parallel,29Pritchard C.C. Smith C. Salipante S.J. Lee M.K. Thornton A.M. Nord A.S. Gulden C. Kupfer S.S. Swisher E.M. Bennett R.L. Novetsky A.P. Jarvik G.P. Olopade O.I. Goodfellow P.J. King M.C. Tait J.F. Walsh T. ColoSeq provides comprehensive lynch and polyposis syndrome mutational analysis using massively parallel sequencing.J Mol Diagn. 2012; 14: 357-366Abstract Full Text Full Text PDF PubMed Scopus (164) Google Scholar, 30Frampton G.M. Fichtenholtz A. Otto G.A. Wang K. Downing S.R. He J. et al.Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing.Nat Biotechnol. 2013; 31: 1023-1031Crossref PubMed Scopus (1435) Google Scholar, 31Pritchard C.C. Salipante S.J. Koehler K. Smith C. Scroggins S. Wood B. Wu D. Lee M.K. Dintzis S. Adey A. Liu Y. Eaton K.D. Martins R. Stricker K. Margolin K.A. Hoffman N. Churpek J.E. Tait J.F. King M.C. Walsh T. Validation and implementation of targeted capture and sequencing for the detection of actionable mutation, copy number variation, and gene rearrangement in clinical cancer specimens.J Mol Diagn. 2014; 16: 56-67Abstract Full Text Full Text PDF PubMed Scopus (198) Google Scholar, 32Cottrell C.E. Al-Kateb H. Bredemeyer A.J. Duncavage E.J. Spencer D.H. Abel H.J. Lockwood C.M. Hagemann I.S. O'Guin S.M. Burcea L.C. Sawyer C.S. Oschwald D.M. Stratman J.L. Sher D.A. Johnson M.R. Brown J.T. Cliften P.F. George B. McIntosh L.D. Shrivastava S. Nguyen T.T. Payton J.E. Watson M.A. Crosby S.D. Head R.D. Mitra R.D. Nagarajan R. Kulkarni S. Seibert K. Virgin 4th, H.W. Milbrandt J. Pfeifer J.D. Validation of a next-generation sequencing assay for clinical molecular oncology.J Mol Diagn. 2014; 16: 89-105Abstract Full Text Full Text PDF PubMed Scopus (156) Google Scholar and could be adapted for the focused purpose of characterizing colorectal cancers for molecular workup. Although integrating colorectal cancer testing into an NGS diagnostic would offer practical advantages in eliminating the need for multiple, separate diagnostic tests, the unique analytic properties of NGS could also translate to performance advantages over existing testing methods. Such benefits include the following: i) The ability of the technology to detect low-prevalence, cancer-associated mutations is greater than that of conventional methods,31Pritchard C.C. Salipante S.J. Koehler K. Smith C. Scroggins S. Wood B. Wu D. Lee M.K. Dintzis S. Adey A. Liu Y. Eaton K.D. Martins R. Stricker K. Margolin K.A. Hoffman N. Churpek J.E. Tait J.F. King M.C. Walsh T. Validation and implementation of targeted capture and sequencing for the detection of actionable mutation, copy number variation, and gene rearrangement in clinical cancer specimens.J Mol Diagn. 2014; 16: 56-67Abstract Full Text Full Text PDF PubMed Scopus (198) Google Scholar, 32Cottrell C.E. Al-Kateb H. Bredemeyer A.J. Duncavage E.J. Spencer D.H. Abel H.J. Lockwood C.M. Hagemann I.S. O'Guin S.M. Burcea L.C. Sawyer C.S. Oschwald D.M. Stratman J.L. Sher D.A. Johnson M.R. Brown J.T. Cliften P.F. George B. McIntosh L.D. Shrivastava S. Nguyen T.T. Payton J.E. Watson M.A. Crosby S.D. Head R.D. Mitra R.D. Nagarajan R. Kulkarni S. Seibert K. Virgin 4th, H.W. Milbrandt J. Pfeifer J.D. Validation of a next-generation sequencing assay for clinical molecular oncology.J Mol Diagn. 2014; 16: 89-105Abstract Full Text Full Text PDF PubMed Scopus (156) Google Scholar, 33Harismendy O. Schwab R.B. Bao L. Olson J. Rozenzhak S. Kotsopoulos S.K. Pond S. Crain B. Chee M.S. Messer K. Link D.R. Frazer K.A. Detection of low prevalence somatic mutations in solid tumors with ultra-deep targeted sequencing.Genome Biol. 2011; 12: R124Crossref PubMed Scopus (74) Google Scholar, 34Hiatt J.B. Pritchard C.C. Salipante S.J. O'Roak B.J. Shendure J. Single molecule molecular inversion probes for targeted, high-accuracy detection of low-frequency variation.Genome Res. 2013; 23: 843-854Crossref PubMed Scopus (227) Google Scholar because each DNA molecule is examined independently by NGS, potentially providing increased sensitivity for detecting relevant cancer-associated mutations. ii) Our group35Salipante S.J. Scroggins S.M. Hampel H.L. Turner E.H. Pritchard C.C. Microsatellite instability detection by next generation sequencing.Clin Chem. 2014; 60: 1192-1199Crossref PubMed Scopus (252) Google Scholar and others36Lu Y. Soong T.D. Elemento O. A novel approach for characterizing microsatellite instability in cancer cells.PLoS One. 2013; 8: e63056Crossref PubMed Scopus (38) Google Scholar, 37Niu B. Ye K. Zhang Q. Lu C. Xie M. McLellan M.D. Wendl M.C. Ding L. MSIsensor: microsatellite instability detection using paired tumor-normal sequence data.Bioinformatics. 2014; 30: 1015-1016Crossref PubMed Scopus (379) Google Scholar, 38Kim T.M. Laird P.W. Park P.J. The landscape of microsatellite instability in colorectal and endometrial cancer genomes.Cell. 2013; 155: 858-868Abstract Full Text Full Text PDF PubMed Scopus (247) Google Scholar have developed methods to computationally infer MSI status from NGS data on the basis of the quantification and distribution of observed allele lengths at microsatellite loci. This offers a standardized, statistical approach for interpreting MSI testing results, in contrast to the current practice of subjective interpretation of MSI-PCR electropherogram traces.35Salipante S.J. Scroggins S.M. Hampel H.L. Turner E.H. Pritchard C.C. Microsatellite instability detection by next generation sequencing.Clin Chem. 2014; 60: 1192-1199Crossref PubMed Scopus (252) Google Scholar iii) Owing to the digital nature of NGS data, primary analysis can be readily automated,31Pritchard C.C. Salipante S.J. Koehler K. Smith C. Scroggins S. Wood B. Wu D. Lee M.K. Dintzis S. Adey A. Liu Y. Eaton K.D. Martins R. Stricker K. Margolin K.A. Hoffman N. Churpek J.E. Tait J.F. King M.C. Walsh T. Validation and implementation of targeted capture and sequencing for the detection of actionable mutation, copy number variation, and gene rearrangement in clinical cancer specimens.J Mol Diagn. 2014; 16: 56-67Abstract Full Text Full Text PDF PubMed Scopus (198) Google Scholar, 35Salipante S.J. Scroggins S.M. Hampel H.L. Turner E.H. Pritchard C.C. Microsatellite instability detection by next generation sequencing.Clin Chem. 2014; 60: 1192-1199Crossref PubMed Scopus (252) Google Scholar, 39McKenna A. Hanna M. Banks E. Sivachenko A. Cibulskis K. Kernytsky A. Garimella K. Altshuler D. Gabriel S. Daly M. DePristo M.A. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data.Genome Res. 2010; 20: 1297-1303Crossref PubMed Scopus (14770) Google Scholar ensuring consistency in test interpretation. Herein, we describe the clinical validation of a novel NGS assay, MSIplus, for simultaneously evaluating tumor MSI status and mutational hotspots in KRAS, NRAS, and BRAF genes, and provide interpretive guidelines for its diagnostic use. In contrast to earlier research work, which has used NGS to evaluate MSI status from exome and targeted gene capture designs, our assay uses an amplicon sequencing approach, which enables effective targeting and high depth of coverage for the loci of interest. The assay is suitable for molecular characterization of colorectal cancers, does not require matched normal material for inference of MSI status, and is rapid, cost-effective, sensitive, and specific. For the purpose of inferring MSI status, we selected a panel of 11 microsatellite markers from our earlier analysis of colorectal cancer exome data35Salipante S.J. Scroggins S.M. Hampel H.L. Turner E.H. Pritchard C.C. Microsatellite instability detection by next generation sequencing.Clin Chem. 2014; 60: 1192-1199Crossref PubMed Scopus (252) Google Scholar that were empirically found to be both most discriminatory for MSI and most frequently unstable in MSI-positive tumors (Table 1). We also incorporated the mononucleotide A/T tract of HSPH1,40Dorard C. de Thonel A. Collura A. Marisa L. Svrcek M. Lagrange A. Jego G. Wanherdrick K. Joly A.L. Buhard O. Gobbo J. Penard-Lacronique V. Zouali H. Tubacher E. Kirzin S. Selves J. Milano G. Etienne-Grimaldi M.C. Bengrine-Lefevre L. Louvet C. Tournigand C. Lefevre J.H. Parc Y. Tiret E. Flejou J.F. Gaub M.P. Garrido C. Duval A. Expression of a mutant HSP110 sensitizes colorectal cancer cells to chemotherapy and improves disease prognosis.Nat Med. 2011; 17: 1283-1289Crossref PubMed Scopus (117) Google Scholar the instability of which predicts sensitivity to particular anticancer agents, and the five microsatellite markers (MONO-27, BAT-25, BAT-26, NR-21, and NR-24) that compose a performance-enhanced derivative of the Bethesda panel15Umar A. Boland C.R. Terdiman J.P. Syngal S. de la Chapelle A. Ruschoff J. Fishel R. Lindor N.M. Burgart L.J. Hamelin R. Hamilton S.R. Hiatt R.A. Jass J. Lindblom A. Lynch H.T. Peltomaki P. Ramsey S.D. Rodriguez-Bigas M.A. Vasen H.F. Hawk E.T. Barrett J.C. Freedman A.N. Srivastava S. Revised Bethesda Guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability.J Natl Cancer Inst. 2004; 96: 261-268Crossref PubMed Scopus (2461) Google Scholar used in current clinical MSI-PCR assays.16Bacher J.W. Flanagan L.A. Smalley R.L. Nassif N.A. Burgart L.J. Halberg R.B. Megid W.M. Thibodeau S.N. Development of a fluorescent multiplex assay for detection of MSI-High tumors.Dis Markers. 2004; 20: 237-250Crossref PubMed Scopus (195) Google Scholar Separate primers were designed to span exons containing relevant mutational hotspots in KRAS (exons 2, 3, and 4; codons 12, 13, 61, 117, and 147), NRAS (exons 2, 3, and 4; codons 12, 13, 61, 117, and 147), and BRAF (exon 15; codons 599, 600, and 601).Table 1Loci and Primer SequencesAssay stageTarget locusPrimer coordinatesRepeat typeForward primer sequenceReverse primer sequenceStage 1 PCRBat-25Chr4: 55598177-55598271(A)225′-ACACTCTTTCCCTACACGACGCTCTTCCGATCTGGAGGATGACGAGTTGGCCCTAGAC-3′5′-CGGTCTCGGCATTCCTGCTGAACCGCTCTTGTGTTTCCCAAAGAGACAGCAGTTGGAACATGA-3′Stage 1 PCRBat-26Chr2: 47641524-47641622(T)195′-ACACTCTTTCCCTACACGACGCTCTTCCGATCTAGTGGAGTGGAGGAGGGGAGAGAAA-3′5′-CGGTCTCGGCATTCCTGCTGAACCGCTCTTGTGTTTCTTGCAGTTTCATCACTGTCTGCGGT-3′Stage 1 PCRMONO-27Chr2: 39564859-39564957(T)285′-ACACTCTTTCCCTACACGACGCTCTTCCGATCTCTACTGTCCTACTGTGCCTGGCTCC-3′5′-CGGTCTCGGCATTCCTGCTGAACCGCTCTTGTGTTTCCAGCCTGGGCAAGATAATGAGACCC-3′Stage 1 PCRNR-21Chr14: 23652311-23652403(A)225′-ACACTCTTTCCCTACACGACGCTCTTCCGATCTCTGGTGCACAGAGCAGAACCATCCT-3′5′-CGGTCTCGGCATTCCTGCTGAACCGCTCTTGTGTTTCGCAACCTCAAAAGCTGCCTCCCTTT-3′Stage 1 PCRNR-24Chr2: 95849327-95849419(T)245′-ACACTCTTTCCCTACACGACGCTCTTCCGATCTCTGTAGTCCCAGCTATTCGGGAGGC-3′5′-CGGTCTCGGCATTCCTGCTGAACCGCTCTTGTGTTTCAAATGACCCCTTCCTGCCCATCACT-3′Stage 1 PCRMSI-01Chr1: 201754376-201754446(T)175′-ACACTCTTTCCCTACACGACGCTCTTCCGATCTTTGATGTCCTGCGTCTAGGGTCTGC-3′5′-CGGTCTCGGCATTCCTGCTGAACCGCTCTTGTGTTTCGACTGGAGCCTTGGACAGGTTGAGA-3′Stage 1 PCRMSI-03Chr2: 62063059-62063129(A)175′-ACACTCTTTCCCTACACGACGCTCTTCCGATCTGCCACTGCTATTTGAAAGAGTTGCTC-3′5′-CGGTCTCGGCATTCCTGCTGAACCGCTCTTGTGTTTCGCCACTGCTATTTGAAAGAGTTGCTC-3′Stage 1 PCRMSI-04Chr2: 108479588-108479658(T)185′-ACACTCTTTCCCTACACGACGCTCTTCCGATCTTCCAAGATTCCTTCCCTGGCCACTC-3′5′-CGGTCTCGGCATTCCTGCTGAACCGCTCTTGTGTTTCACTGTCTGTAGTCCTGGCTTCGTGG-3′Stage 1 PCRMSI-06Chr5: 172421726-172421796(T)155′-ACACTCTTTCCCTACACGACGCTCTTCCGATCTAGCAGCAAACTGAACAGGTCACCAAC-3′5′-CGGTCTCGGCATTCCTGCTGAACCGCTCTTGTGTTTCAGCAGCAAACTGAACAGGTCACCAAC-3′Stage 1 PCRMSI-07Chr6: 142691916-142691986(T)175′-ACACTCTTTCCCTACACGACGCTCTTCCGATCTGCTGAAAGCAACCTAAGCTGTGGTGA-3′5′-CGGTCTCGGCATTCCTGCTGAACCGCTCTTGTGTTTCTGCTATAAGAGCTGAGCAGACGACA-3′Stage 1 PCRMSI-08Chr7: 1787485-1787555(A)175′-ACACTCTTTCCCTACACGACGCTCTTCCGATCTCCAGCCCCCATGTACACTGTAGTCG-3′5′-CGGTCTCGGCATTCCTGCTGAACCGCTCTTGTGTTTCCCCACCCCAAGGCCAAAATCAGTAA-3′Stage 1 PCRMSI-09Chr7: 74608706-74608776(T)135′-ACACTCTTTCCCTACACGACGCTCTTCCGATCTGTCTCGGCTACTTGGGAGGCTTAGG-3′5′-CGGTCTCGGCATTCCTGCTGAACCGCTCTTGTGTTTCCCGACTAAAGAGGTCATTCACTTGT-3′Stage 1 PCRMSI-11Chr11: 106695477-106695550(T)125′-ACACTCTTTCCCTACACGACGCTCTTCCGATCTAGCATGTTTGCAGCCTTCTTCTGGA-3′5′-CGGTCTCGGCATTCCTGCTGAACCGCTCTTGTGTTTCAGCATGTTTGCAGCCTTCTTCTGGA-3′Stage 1 PCRMSI-12Chr15: 45897737-45897807(T)145′-ACACTCTTTCCCTACACGACGCTCTTCCGATCTGCTGAGGCTAAACACTATCATGCCA-3′5′-CGGTCTCGGCATTCCTGCTGAACCGCTCTTGTGTTTCCAGAGGTTGCAGTGAGCCGAGATTG-3′Stage 1 PCRMSI-13Chr16: 18882625-18882695(A)155′-ACACTCTTTCCCTACACGACGCTCTTCCGATCTACATCTTCAGGTCAGGAAAACAGCTCG-3′5′-CGGTCTCGGCATTCCTGCTGAACCGCTCTTGTGTTTCTAATGACTTGGGCTTTGGAAGCAGC-3′Stage 1 PCRMSI-14Chr17: 19314883-19314953(T)185′-ACACTCTTTCCCTACACGACGCTCTTCCGATCTCATTTCAACTGACCTGCCTGGCCTC-3′5′-CGGTCTCGGCATTCCTGCTGAACCGCTCTTGTGTTTCCTTGGCAAACGGGCAAGTCTTCAGT-3′Stage 1 PCRHSPH1-T17Chr13: 31722570-31722746(A)175′-ACACTCTTTCCCTACACGACGCTCTTCCGATCTTGGAAAAGGAACTGCATCTGTGACGG-3′5′-CGGTCTCGGCATTCCTGCTGAACCGCTCTTGTGTTTCTTTTCCTAATCCCCTGTGAAACCTGT-3′Stage 1 PCRBRAF exon 15Chr7: 140453095-140453431NA5′-ACACTCTTTCCCTACACGACGCTCTTCCGATCTACAACTGTTCAAACTGATGGGACC-3′5′-CGGTCTCGGCATTCCTGCTGAACCGCTCTTGTGTTTCCCTCATCCTAACACATTTCAAGCCCCA-3′Stage 1 PCRKRAS exon 4Chr12: 25378395-25378686NA5′-ACACTCTTTCCCTACACGACGCTCTTCCGATCTTTTCAGTGTTACTTACCTGTCTTGTC-3′5′-CGGTCTCGGCATTCCTGCTGAACCGCTCTTGTGTTTCTGACAAAAGTTGTGGACAGGT-3′Stage 1 PCRKRAS exon 3Chr12: 25380233-25380491NA5′-ACACTCTTTCCCTACACGACGCTCTTCCGATCTCCCAGTCCTCATGTACTGGTCCCT-3′5′-CGGTCTCGGCATTCCTGCTGAACCGCTCTTGTGTTTCCCGTCATCTTTGGAGCAGGAACA-3′Stage 1 PCRKRAS exon 2Chr12: 25398245-25398504NA5′-ACACTCTTTCCCTACACGACGCTCTTCCGATCTTGAATTAGCTGTATCGTCAAGGCACTC-3′5′-CGGTCTCGGCATTCCTGCTGAACCGCTCTTGTGTTTCACACGTCTGCAGTCAACTGGAATTT-3′Stage 1 PCRNRAS exon 4Chr1: 115252168-115252401NA5′-ACACTCTTTCCCTACACGACGCTCTTCCGATCTAATGCTGAAAGCTGTACCATACC-3′5′-CGGTCTCGGCATTCCTGCTGAACCGCTCTTGTGTTTCCCCAGCCTAATCTTGTTTTTCTT-3′Stage 1 PCRNRAS exon 3Chr1: 115258629-115258838NA5′-ACACTCTTTCCCTACACGACGCTCTTCCGATCTTGTGGCTCGCCAATTAACCCTG-3′5′-CGGTCTCGGCATTCCTGCTGAACCGCTCTTGTGTTTCTGAGAGACAGGATCAGGTCAGCGG-3′Stage 1 PCRNRAS exon 2Chr1: 115256475-115256731NA5′-ACAC
Referência(s)