Selective, rapid and optically switchable regulation of protein function in live mammalian cells
2015; Nature Portfolio; Volume: 7; Issue: 7 Linguagem: Inglês
10.1038/nchem.2253
ISSN1755-4349
AutoresYu‐Hsuan Tsai, Sebastian Essig, John R. James, Kathrin Lang, Jason W. Chin,
Tópico(s)Advanced Fluorescence Microscopy Techniques
ResumoThe rapid and selective regulation of a target protein within living cells that contain closely related family members is an outstanding challenge. Here we introduce genetically directed bioorthogonal ligand tethering (BOLT) and demonstrate selective inhibition (iBOLT) of protein function. In iBOLT, inhibitor–conjugate/target protein pairs are created where the target protein contains a genetically encoded unnatural amino acid with bioorthogonal reactivity and the inhibitor conjugate contains a complementary bioorthogonal group. iBOLT enables the first rapid and specific inhibition of MEK isozymes, and introducing photoisomerizable linkers in the inhibitor conjugate enables reversible, optical regulation of protein activity (photo-BOLT) in live mammalian cells. We demonstrate that a pan kinase inhibitor conjugate allows selective and rapid inhibition of the lymphocyte specific kinase, indicating the modularity and scalability of BOLT. We anticipate that BOLT will enable the rapid and selective regulation of diverse proteins for which no selective small-molecule ligands exist. The rapid and selective regulation of a target protein within living cells containing closely related family members is a longstanding challenge. Now the introduction of genetically directed bioorthogonal ligand tethering (BOLT) and the demonstration of selective inhibition (iBOLT) and optical switching (photo-BOLT) of protein function in live mammalian cells addresses this challenge.
Referência(s)