Avian navigation and geographic positioning
2014; Association of Field Ornithologists; Volume: 85; Issue: 2 Linguagem: Inglês
10.1111/jofo.12055
ISSN1557-9263
AutoresMark E. Deutschlander, Robert C. Beason,
Tópico(s)Avian ecology and behavior
ResumoJournal of Field OrnithologyVolume 85, Issue 2 p. 111-133 Review Avian navigation and geographic positioning Mark E. Deutschlander, Corresponding Author Mark E. Deutschlander Department of Biology, Hobart and William Smith Colleges, Geneva, New York, 14456 USACorresponding author. Email: [email protected]Search for more papers by this authorRobert C. Beason, Robert C. Beason 826 East 1650 Road, Baldwin City, Kansas, 66006 USASearch for more papers by this author Mark E. Deutschlander, Corresponding Author Mark E. Deutschlander Department of Biology, Hobart and William Smith Colleges, Geneva, New York, 14456 USACorresponding author. Email: [email protected]Search for more papers by this authorRobert C. Beason, Robert C. Beason 826 East 1650 Road, Baldwin City, Kansas, 66006 USASearch for more papers by this author First published: 26 May 2014 https://doi.org/10.1111/jofo.12055Citations: 10Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat ABSTRACTen Site fidelity to breeding and wintering grounds, and even stopover sites, suggests that passerines are capable of accurate navigation during their annual migrations. Geolocator-based studies are beginning to demonstrate precise population-specific migratory routes and even some interannual consistency in individual routes. Displacement studies of birds have shown that at least adult birds are capable of goal-oriented movements, likely involving some type of map or geographic position system. In contrast, juveniles on their first migration use a clock-and-compass orientation strategy, with limited knowledge about locations along their migratory routes. Positioning information could come from a variety of cues including visual, olfactory, acoustic, and geomagnetic sources. How information from these systems is integrated and used for avian navigation has yet to be fully articulated. In this review, we (1) define geographic positioning and distinguish the types of navigational strategies that birds could use for orientation, (2) describe sensory cues available to birds for geographic positioning, (3) review the evidence for geographic positioning in birds and methods used to collect that evidence, and (4) discuss ways ornithologists, particularly field ornithologists, can contribute to and advance our knowledge of the navigational abilities of birds. Few studies of avian orientation and navigation mechanisms have been conducted in the Western Hemisphere. To fully understand migratory systems in the Western Hemisphere and develop better conservation policies, information about the orientation and navigation mechanisms used by specific species needs to be integrated with other aspects of their migration ecology and biology. RESUMENes Navegación en aves y posicionamiento geográfico Fidelidad con las localidades de reproducción y zonas de migración e incluso sitios de parada, sugiere que los Passeriformes tienen habilidades de navegación precisa durante las migraciones anuales. Estudios basados en geolocalizadores están comenzando a demostrar, rutas precisas especificas para las poblaciones, e inclusive alguna consistencia interanual en rutas individuales. Estudios de desplazamiento han demostrado que por lo menos aves adultas tienen la habilidad de realizar movimientos orientados hacia los objetivos, probablemente involucrando algún tipo de mapa o sistema de posicionamiento geográfico. En contraste, aves juveniles en su primera etapa de migración usan una estrategia de orientación basada en reloj y compas, con conocimiento limitado acerca de las localidades a lo largo de las rutas de migración. La información sobre el posicionamiento puede provenir de una variedad de señales incluyendo fuentes visuales, olfatorias, acústicas y geomagnéticas. Sin embargo, todavía no ha sido completamente articulado la forma en la cual estos sistemas son integrados y utilizados para la navegación en aves. En esta revisión, (1) definimos el posicionamiento geográfico y diferenciamos entre tipos de estrategias de navegación que las aves potencialmente usan para la orientación, (2) describimos las señales sensoriales disponibles para las aves para el posicionamiento geográfico, (3) hacemos una revisión de la evidencia existente para el posicionamiento global en aves y los métodos utilizados para colectar esta evidencia, y (4) discutimos algunas formas de cómo los ornitólogos, particularmente ornitólogos de campo, pueden contribuir y promover nuestro conocimiento sobre las habilidades de navegación en las aves. En el hemisferio Occidental, se han realizado pocos estudios de orientación en aves y mecanismos de navegación. Para comprender completamente los sistemas de migración en el hemisferio Occidental y desarrollar mejores políticas de conservación, necesitamos integrar la información acerca de los mecanismos de orientación y navegación utilizados por especies especificas, con otros aspectos de la ecología de la migración y biología. References Wallraff, H. G. 2014. Do olfactory stimuli provide positional information for home-oriented avian navigation? Animal Behaviour 90: e1–e6. 10.1016/j.anbehav.2014.01.012 Web of Science®Google Scholar Phillips, J. B., and P. E. Jorge. 2014. Olfactory navigation: failure to attempt replication of critical experiments keeps controversy alive. Reply to Wallraff. Animal Behaviour 90: e7–e9. 10.1016/j.anbehav.2014.01.013 Web of Science®Google Scholar LITERATURE CITED Able, K. P. 1996. The debate over olfactory navigation by homing pigeons. Journal of Experimental Biology 199: 121–124. PubMedWeb of Science®Google Scholar Able, K. P., and P. Dillon. 1977. Sun compass orientation in a nocturnal migrant, the White-throated Sparrow. Condor 79: 393–395. 10.2307/1368027 Web of Science®Google Scholar Able, K. P., and M. A. Able. 1993. Daytime calibration of magnetic orientation in a migratory bird requires a view of skylight polarization. Nature: 364: 523–525. 10.1038/364523a0 Web of Science®Google Scholar Able, K. P., and M. A. Able. 1996. The flexible migratory orientation system of the Savannah Sparrow (Passerculus sandwichensis). Journal of Experimental Biology 199: 3–8. PubMedWeb of Science®Google Scholar Åkesson, S. 1993. Coastal migration and wind drift compensation in nocturnal passerine migrants. Ornis Scandinavia 24: 87–94. 10.2307/3676357 Web of Science®Google Scholar Åkesson, S. 2003. Avian long distance navigation: experiments with migratory birds. In: Avian migration ( P. Berthold, E. Gwinner, and E. Sonnenschein, eds.), pp. 471–492. Springer, Berlin, Germany. 10.1007/978-3-662-05957-9_33 Google Scholar Åkesson, S., L. Karlsson, G. Walinder, and T. Alerstam. 1996. Bimodal orientation and the occurrence of temporary reverse bird migration during autumn in south Scandinavia. Behavioral Ecology and Sociobiology 38: 293–302. 10.1007/s002650050245 Web of Science®Google Scholar Åkesson, S., J. Morin, R. Muheim, and U. Ottosson. 2005. Dramatic orientation shift of White-crowned Sparrows displaced across longitudes in the high Arctic. Current Biology 15: 1591–1597. 10.1016/j.cub.2005.07.027 CASPubMedWeb of Science®Google Scholar Åkesson, S., R. Klaassen, J. Holmgren, J. W. Fox, and A. Hedenström. 2012. Migration routes and strategies in a highly aerial migrant, the Common Swift Apus apus, revealed by light-level geolocators. PLoS ONE 7: e41195. 10.1371/journal.pone.0041195 CASPubMedWeb of Science®Google Scholar Alerstam, T., and S.-G. Petterson. 1977. Why do birds fly along coastlines? Journal of Theoretical Biology 65: 699–712. 10.1016/0022-5193(77)90016-9 CASPubMedWeb of Science®Google Scholar Arit, D., M. Low, and T. Part. 2013. Effect of geolocators on migration and subsequent breeding performance of a long-distance passerine migrant. PLoS ONE 8: e82316. 10.1371/journal.pone.0082316 CASWeb of Science®Google Scholar Arrowsmith, S. J., and M. A. H. Hedlin. 2005. Observations of infrasound from surf in southern California. Geophysical Research Letters 32: L09810. 10.1029/2005GL022761 Web of Science®Google Scholar Bairlein, F., D. R. Norris, R. Nagel, M. Bulte, C. C. Voight, J. W. Fox, D. J. T. Hussell, and H. Schmaljohann. 2012. Cross-hemisphere migration of a 25 g songbird. Biology Letters 8: 505–507. 10.1098/rsbl.2011.1223 PubMedWeb of Science®Google Scholar Balda, R. P., and R. J. Turek. 1984. The cache-recovery system as an example of memory capabilities in Clark's Nutcracker. In: Animal cognition ( H. L. Reitblat, T. F. Bever, and H. S. Terrace, eds.), pp. 513–532. Erlbaum, Hillsdale, NJ. Google Scholar Bearhop, S., W. Fiedler, R. W. Furness, S. C. Votier, S. Waldron, J. Newton, F. J. Bowen, P. Berthold, and K. Farnsworth. 2005. Assortative mating as a mechanism for rapid evolution of a migratory divide. Science 310: 502–504. 10.1126/science.1115661 CASPubMedWeb of Science®Google Scholar Beason, R. C. 1992. You can get there from here: responses to simulated magnetic equator crossing by the Bobolink (Dolichonyx oryzivorus). Ethology 91: 75–80. 10.1111/j.1439-0310.1992.tb00852.x Web of Science®Google Scholar Beason, R. C. 2004. What do birds hear? Proceedings of the Vertebrate Pest Conference 21: 92–96. Google Scholar Beason, R. C. 2005. Mechanisms of magnetic orientation in birds. Integrative and Comparative Biology 45: 565–573. 10.1093/icb/45.3.565 PubMedWeb of Science®Google Scholar Beason, R. C. [online]. 2012. Avian vision perception: a literature review. EPRI, Palo Atlo, CA. (Accessed 29 December 2013). Google Scholar Beason, R. C., N. Dussourd, and M. E. Deutschlander. 1995. Behavioral evidence for the use of magnetic material in magnetoreception by a migratory bird. Journal of Experimental Biology 198: 141–146. PubMedWeb of Science®Google Scholar Beason, R. C., and J. E. Nichols. 1984. Magnetic orientation and magnetically sensitive material in a transequatorial migratory bird. Nature 309: 151–153. 10.1038/309151a0 Web of Science®Google Scholar Beason, R. C., and P. Semm. 1987. Magnetic responses of the trigeminal nerve system of the Bobolink, Dolichonyx oryzivorus (Aves: Icteridae). Neuroscience Letters 80: 229–234. 10.1016/0304-3940(87)90659-8 CASPubMedWeb of Science®Google Scholar Beason, R. C., and P. Semm. 1996. Does the avian ophthalmic nerve carry magnetic navigational information? Journal of Experimental Biology 199: 1241–1244. PubMedWeb of Science®Google Scholar Beck, W., and W. Wiltschko. 1983. Orientation behaviour recorded in registration cages: a comparison of funnel cages and radial perch cages. Behaviour 87: 145–156. 10.1163/156853983X00156 Web of Science®Google Scholar Beck, W., and W. Wiltschko. 1988. Magnetic factors control the migratory direction of Pied Flycatchers, Fidecula hypoleuca. In: Acta XIX Congress of International Ornithology ( H. Ouellet, ed.), pp. 1955–1962. Ottawa, ON, Canada. Google Scholar Berthold, P. 1991. Spatiotemporal programmes and genetics of orientation. In: Orientation in birds ( P. Berthold, ed.), pp. 86–105. Birkhauser Verlag, Basel, Switzerland. 10.1007/978-3-0348-7208-9_5 Google Scholar Bingman, V. P. 1981. Savannah Sparrows have a magnetic compass. Animal Behaviour 29: 962–963. 10.1016/S0003-3472(81)80040-1 Web of Science®Google Scholar Bingman, V. P., and K. Cheng. 2005. Mechanisms of animal global navigation: comparative perspectives and enduring challenges. Ethology, Ecology and Evolution 17: 295–318. 10.1080/08927014.2005.9522584 Web of Science®Google Scholar Bingman, V. P., A. Gagliardo, G. E. HoughII, P. Ioalè, M. C. Kahn, and J. J. Siegel. 2005. The avian hippocampus, homing in pigeons and the memory representation of large-scale space. Integrative and Comparative Biology 45: 555–564. 10.1093/icb/45.3.555 PubMedWeb of Science®Google Scholar Bingman, V. P., T. Jechura, and M. C. Kahn [online]. 2006. Behavioral and neural mechanisms of homing and migration in birds. In: Animal spatial cognition: comparative, neural, and computational approaches ( M. F. Brown and R. G. Cook, eds.). (Accessed 31 December 2013). Google Scholar Bollinger, E. K., and T. A. Gavin. 1989. The effects of site quality on breeding-site fidelity in Bobolinks. Auk 106: 584–594. Web of Science®Google Scholar Boström, J. E., S. Åkesson, and T. Alerstam. 2012. Where on Earth can animals use a bicoordinate map for navigation. Ecography 35: 1039–1047. 10.1111/j.1600-0587.2012.07507.x Web of Science®Google Scholar Brandes, D., and D. W. Ombalski. 2004. Modelling raptor migration pathways using fluid flow analogy. Journal of Raptor Research 38: 195–207. Web of Science®Google Scholar Bridge, E. S., J. F. Kelly, A. Contina, R. M. Gabrielson, R. B. Maccurdy, and D. W. Winkler. 2013. Advances in tracking small migratory birds: a technical review of light-level geolocation. Journal of Field Ornithology 84: 121–137. 10.1111/jofo.12011 Web of Science®Google Scholar Bridge, E. S., K. Thorup, M. S. Bowlin, P. B. Chilson, R. H. Diehl, R. W. Fléron, P. Hartl, R. Kays, J. F. Kelly, W. D. Robinson, and M. Wikelski. 2011. Technology on the move: recent and forthcoming innovations for tracking migratory birds. BioScience 61: 689–698. 10.1525/bio.2011.61.9.7 Web of Science®Google Scholar Brines, M. L., and J. L. Gould. 1982. Skylight polarization patterns and animal orientation. Journal of Experimental Biology 96: 69–91. Web of Science®Google Scholar Brio, D., J. Meade, and T. Guilford. 2004. Familiar route loyalty implies visual pilotage in the homing pigeon. Proceedings of the National Academy of Sciences USA 101: 17440–17443. 10.1073/pnas.0406984101 CASWeb of Science®Google Scholar Bruderer, B. 1982. Do migrating birds fly along straight lines? In: Avian navigation ( F. Papi and H. G. Wallraff, eds.), pp. 3–14. Springer, Berlin, Germany. 10.1007/978-3-642-68616-0_1 Google Scholar Bruderer, B., and L. Jenni. 1988. Strategies of bird migration in the area of the Alps. In: Acta XIX Congress of International Ornithology ( H. Ouellet, ed.), pp. 2150–2161. Ottawa, ON, Canada. Google Scholar Bruderer, B., and F. Liechti. 1998. Flight behavior of nocturnally migrating birds in coastal areas—crossing or coasting. Journal of Avian Biology 29: 499–507. 10.2307/3677169 Web of Science®Google Scholar Bunch, K. F., and D. F. Tomback. 1986. Bolus recovery by Gray Jays: an experimental analysis. Animal Behaviour 34: 754–762. 10.1016/S0003-3472(86)80059-8 Web of Science®Google Scholar Cantos, F. J., and J. L. Tellería. 1994. Stopover site fidelity of four migrants warblers in the Iberian Peninsula. Journal of Avian Biology 25: 131–134. 10.2307/3677031 Web of Science®Google Scholar Chernetsov, N., D. Kishkinev, and H. Mouritsen. 2008a. A long-distance avian migrant compensates for longitudinal displacement during spring migration. Current Biology 18: 188–190. 10.1016/j.cub.2008.01.018 CASPubMedWeb of Science®Google Scholar Chernetsov, N., D. Kishkinev, S. Gashkov, S. Kosarev, and C. Bolshakov. 2008b. Orientation programme of first-year Pied Flycatchers Ficedula hypoleuca from Siberia implies an innate detour around Central Asia. Animal Behaviour 75: 539–545. 10.1016/j.anbehav.2007.05.019 Web of Science®Google Scholar Clark, L., K. V. Avilova, and N. J. Bean. 1993. Odor thresholds in passerines. Comparative Biochemistry and Physiology Part A 104: 305–312. 10.1016/0300-9629(93)90322-U Web of Science®Google Scholar Cochran, W. W. 1987. Orientation and other migratory behaviors of a Swainson Thrush followed for 1500 km. Animal Behaviour 35: 927–929. 10.1016/S0003-3472(87)80132-X Web of Science®Google Scholar Cochran, W. W., H. Mouritsen, and M. Wikelski. 2004. Migrating songbirds recalibrate their magnetic compass daily from twilight cues. Science 304: 405–408. 10.1126/science.1095844 CASPubMedWeb of Science®Google Scholar Coemans, M. A. J. M., J. J. Vos Hzn, and J. F. W. Nuboer. 1994. The relation between celestial colour gradients and the position of the sun, with regard to the sun compass. Vision Research 34: 1461–1470. 10.1016/0042-6989(94)90148-1 CASPubMedWeb of Science®Google Scholar Cuadrado M. 1992. Year to year recurrence and site-fidelity of blackcaps Sylvia atricapilla and robins Erithacus rubecula in a Mediterranean wintering area. Ringing & Migration 13: 36–42. 10.1080/03078698.1992.9674013 Google Scholar De Bose, J. L., and G. A. Nevitt. 2008. The use of odors at different spatial scales: comparing birds with fish. Journal of Chemical Ecology 34: 867–881. 10.1007/s10886-008-9493-4 CASPubMedWeb of Science®Google Scholar Delmore, K. E., J. W. Fox, and D. E. Irwin. 2012. Dramatic intraspecific differences in migratory routes, stopover sites and wintering areas, revealed using light-level geolocators. Proceedings of the Royal Society B 279: 4582–4589. 10.1098/rspb.2012.1229 PubMedWeb of Science®Google Scholar Deutschlander, M. E., and R. Muheim. 2009. Fuel reserves affect migratory orientation of thrushes and sparrows both before and after crossing an ecological barrier near their breeding grounds. Journal of Avian Biology 40: 85–89. 10.1111/j.1600-048X.2008.04343.x Web of Science®Google Scholar Deutschlander, M. E., J. B. Phillips, and S. C. Borland. 1999. The case for light-dependent magnetic orientation in animals. Journal of Experimental Biology 202: 891–908. PubMedWeb of Science®Google Scholar Deutschlander, M. E., J. B. Phillips, and U. Munro. 2012. Age-dependent orientation to magnetically-simulated geographical displacements in migratory Australian Silvereyes (Zosterops l. lateralis). Wilson Journal of Ornithology 124: 467–477. 10.1676/11-043.1 Web of Science®Google Scholar Diehl, R. H., R. Larkin, and J. E. Black. 2003. Radar observations of bird migration over the Great Lakes. Auk 120: 278–290. 10.1642/0004-8038(2003)120[0278:ROOBMO]2.0.CO;2 Web of Science®Google Scholar Emlen, S. 1967a. Migratory orientation of the Indigo Bunting, Passerina cyanea—part 1: evidence for use of celestial cues. Auk 84: 309–342. 10.2307/4083084 Web of Science®Google Scholar Emlen, S. 1967b. Migratory orientation of the Indigo Bunting, Passerina cyanea—part 2: mechanism of celestial orientation. Auk 84: 463–489. 10.2307/4083330 Web of Science®Google Scholar Emlen, S., and J. Emlen. 1966. A technique for recording orientation of captive birds. Auk 83: 361–367. 10.2307/4083048 Web of Science®Google Scholar Emlen, S., W. Wiltschko, N. J. Demong, R. Wiltschko, and S. Bergman. 1976. Magnetic direction finding: evidence for its use in migratory Indigo Buntings. Science 193: 505–507. 10.1126/science.193.4252.505 CASPubMedWeb of Science®Google Scholar Erichsen, J. T., W. Hodos, C. Evinger, B. B. Bessette, and S. J. Phillips. 1989. Head orientation in pigeons—postural, locomotor and visual determinants. Brain Behavior and Evolution 33: 268–278. 10.1159/000115935 CASPubMedWeb of Science®Google Scholar Falkenberg, G., G. Fleissner, K. Schuchardt, M. Kuehbacher, P. Thalau, H. Mouritsen, D. Heyers, G. Wellenreuther, and G. Fleissner. 2010. Avian magnetoreception: elaborate iron mineral containing dendrites in the upper beak seem to be a common feature of birds. PLoS ONE 5: e9231. 10.1371/journal.pone.0009231 CASPubMedWeb of Science®Google Scholar Fischer, J. H., U. Munro, and J. B. Phillips. 2003. Magnetic navigation by an avian migrant? In: Avian migration ( P. Berthold, E. Gwinner, and E. Sonnenschein, eds), pp. 423–432. Springer, Berlin, Germany. 10.1007/978-3-662-05957-9_30 Google Scholar Fleissner, G., E. Holtkamp-Rötzler, M. Hanzlik, M. Winklhofer, G. Fleissner, N. Petersen, and W. Wiltschko. 2003. Ultrastructural analysis of a putative magnetoreceptor in the beak of homing pigeons. Journal of Comparative Neurology 458: 350–360. 10.1002/cne.10579 CASPubMedWeb of Science®Google Scholar Fransson, T., S. Jakobsson, P. Johansson, C. Kullberg, J. Lind, and A. Vallin. 2001. Magnetic cues trigger extensive refuelling. Nature 414: 35–36. 10.1038/35102115 CASPubMedWeb of Science®Google Scholar Gagliardo, A., J. Bried, P. Lambardi, P. Luschi, M. Wikelski, and F. Bonadoona. 2013. Oceanic navigation in Cory's Shearwaters: evidence for a crucial role of olfactory cues for homing after displacement. Journal of Experimental Biology 216: 2798–2805. 10.1242/jeb.085738 PubMedWeb of Science®Google Scholar Gavin, T. A., and E. K. Bollinger. 1988. Reproductive correlates of breeding-site fidelity in Bobolinks (Dolichonyx oryzivorus). Ecology 69: 96–103. 10.2307/1943164 Web of Science®Google Scholar Gould, J. L., and C. G. Gould. 2012. Nature's compass: the mystery of animal navigation. Princeton University Press, Princeton, NJ. 10.1515/9781400841660 Google Scholar Griffin, D. R. 1952. Bird navigation. Biological Reviews of the Cambridge Philosophical Society 27: 359–400. 10.1111/j.1469-185X.1952.tb01509.x Web of Science®Google Scholar Griffin, D. R., and C. R. Hopkins. 1976. Sounds audible to migrating birds. Animal Behaviour 22: 672–678. 10.1016/S0003-3472(74)80015-1 Web of Science®Google Scholar Guilford, T., S. Åkesson, A. Gagliardo, R.A. Holland, H. Mouritsen, R. Muheim, R. Wiltschko, W. Wiltschko, and V. Bingman. 2011. Migratory navigation in birds: new opportunities in an era of fast-developing tracking technology. Journal of Experimental Biology 214: 3705–3712. 10.1242/jeb.051292 PubMedWeb of Science®Google Scholar Gwinner, E., and W. Wiltschko. 1978. Endogenously controlled changes in migratory direction of the Garden Warbler, Sylvia borin. Journal of Comparative Physiology 125: 267–273. 10.1007/BF00656605 Web of Science®Google Scholar Hagstrum, J. T. 2000. Infrasound and the avian navigational map. Journal of Experimental Biology 203: 1103–1111. CASPubMedWeb of Science®Google Scholar Hein, C. M., S. Engels, D. Kishkinev, and H. Mouritsen. 2011. Robins have a magnetic compass in both eyes. Nature 471: E11–E12. 10.1038/nature09875 CASWeb of Science®Google Scholar Helbig, A. J. 1996. Genetic basis, mode of inheritance and evolutionary changes of migratory directions in Palearctic warblers (Aves: Sylviidae). Journal of Experimental Biology 199: 49–55. CASPubMedWeb of Science®Google Scholar Helbig, A. J., P. Berthold, and W. Wiltschko. 1989. Migratory orientation of Blackcaps (Sylvia atricapilla): population-specific shifts of direction during the autumn. Ethology 82: 307–315. 10.1111/j.1439-0310.1989.tb00510.x Web of Science®Google Scholar Henshaw, I., T. Fransson, S. Jakobsson, and C. Kullberg. 2010. Geomagnetic field affects spring migratory direction in a long distance migrant. Behavioral Ecology and Sociobiology 64: 1317–1323. 10.1007/s00265-010-0946-8 Web of Science®Google Scholar Henshaw, I., T. Fransson, S. Jakobsson, J. Lind, A. Vallin, and C. Kullberg. 2008. Food intake and fuel deposition in a migratory bird is affected by multiple as well as single-step changes in the magnetic field. Journal of Experimental Biology 211: 649–653. 10.1242/jeb.014183 PubMedWeb of Science®Google Scholar Herz, R. S., L. Zanette, and D. F. Sherry. 1994. Spatial cues for cache retrieval by Black-capped Chickadees. Animal Behaviour 48: 343–351. 10.1006/anbe.1994.1247 Web of Science®Google Scholar Heyers D., M. Manns, H. Luksch, O. Güntürkün, and H. Mouritsen. 2007. A visual pathway links brain structures active during magnetic compass orientation in migratory birds. PLoS ONE 2: e937. 10.1371/journal.pone.0000937 PubMedWeb of Science®Google Scholar Heyers D., M. Zapka, M. Hoffmeister, J. M. Wild, and H. Mouritsen. 2010. Magnetic field changes activate the trigeminal brainstem complex in a migratory bird. Proceedings of the National Academy of Sciences USA 107: 9394–9399. 10.1073/pnas.0907068107 CASPubMedWeb of Science®Google Scholar Hodos, W., and J. T. Erichsen. 1990. Lower-field myopia in birds: an adaptation that keeps the ground in focus. Vision Research 30: 653–657. 10.1016/0042-6989(90)90091-X CASPubMedWeb of Science®Google Scholar Holland, R. A. 2003. The role of visual landmarks in the avian familiar area map. Journal of Experimental Biology 206: 1773–1778. 10.1242/jeb.00365 PubMedWeb of Science®Google Scholar Holland, R. A. 2010. Differential effects of magnetic pulses on the orientation of naturally migrating birds. Journal of the Royal Society Interface 7: 1617–1625. 10.1098/rsif.2010.0159 Web of Science®Google Scholar Holland, R. A. 2014. True navigation in birds: from quantum physics to global migration. Journal of Zoology, in press. DOI:10.1111/jzo.12107. 10.1111/jzo.12107 Web of Science®Google Scholar Holland, R. A., and B. Helm. 2013. A strong magnetic pulse affects the precision of departure direction of naturally migrating adult but not juvenile birds. Journal of the Royal Society Interface 10: 20121047. 10.1098/rsif.2012.1047 PubMedWeb of Science®Google Scholar Holland, R. A., K. Thorup, A. Gagliardo, I. A. Bisson, E. Knecht, D. Mizrahi, and M. Wikelski. 2009. Testing the role of sensory systems in the migratory heading of a songbird. Journal of Experimental Biology 212: 4065–4071. 10.1242/jeb.034504 CASPubMedWeb of Science®Google Scholar Jorge, P. E., P. A. M. Marques, and J. B. Phillips. 2009. Activational effects of odours on avian navigation. Proceedings of the Royal Society B 277: 45–49. 10.1098/rspb.2009.1521 Web of Science®Google Scholar Karlsson, H., P. Henningsson, J. Bäckman, A. Hedenstrom, and T. Alerstam. 2010. Compensation for wind drift by migrating swifts. Animal Behaviour 80: 399–404. 10.1016/j.anbehav.2010.05.023 Web of Science®Google Scholar Katzner, T. E., D. Brandes, T. Miller, M. LAnzone, C. Maisonneuve, J. A. Tremblay, R. Mulvhill, and G. T. Merovich,Jr. 2012. Topography drives migratory flight altitude of Golden Eagles: implications for on-shore wind energy development. Journal of Applied Ecology 49: 1178–1186. 10.1111/j.1365-2664.2012.02185.x Web of Science®Google Scholar Kerlinger, P. 1989. Flight strategies of migrating hawks. University of Chicago Press, Chicago, IL. Google Scholar Kirschvink, J. L. 1992. Uniform magnetic fields and double-wrapped coil systems: improved techniques for the design of bioelectromagnetic experiments. Bioelectromagnetics 13: 401–411. 10.1002/bem.2250130507 CASPubMedWeb of Science®Google Scholar Kishkinev, D., N. Chernetsov, D. Heyers, and H. Mouritsen. 2013. Migratory Reed Warblers need intact trigeminal nerve to correct for a 1,000 km eastward displacement. PLoS ONE 8: e65847. 10.1371/journal.pone.0065847 CASPubMedWeb of Science®Google Scholar Kishkinev, D., N. Chernetsov, and H. Mouritsen. 2010. A double clock or jetlag mechanism is unlikely to be involved in detection of east-west displacements in a long-distance avian migrant. Auk 127: 773–780. 10.1525/auk.2010.10032 Web of Science®Google Scholar Kramer, G. 1953. Wird die Sonnenhöhe bei der Heimfindeorientierung verwertet? Journal für Ornithologie 94: 201–219. 10.1007/BF01922508 Google Scholar Kramer, G. 1957. Experiments in bird orientation and their interpretation. Ibis 99: 196–227. 10.1111/j.1474-919X.1957.tb01947.x Google Scholar Kreithen, M. O., and D. B. Quine. 1979. Infrasound detection by the homing pigeon: a behavioral audiogram. Journal of Comparative Physiology 129: 1–4. 10.1007/BF00679906 Web of Science®Google Scholar Kullberg, C., I. Henshaw, S. Jakobsson, P. Johansson, and T. Fransson. 2007. Fuelling decisions in migratory birds: geomagnetic cues override the seasonal effect. Proceedings of the Royal Society B 274: 2145–2151. 10.1098/rspb.2007.0554 PubMedWeb of Science®Google Scholar Liechti, F. 2006. Bird: blowin' by the wind? Journal of Ornithology 147: 202–211. 10.1007/s10336-006-0061-9 Web of Science®Google Scholar Marra, P. P. 2000. The role of behavioral dominance in structuring patterns of habitat occupancy in a migrant bird during the nonbreeding season. Behavioral Ecology 11: 299–308. 10.1093/beheco/11.3.299 Web of Science®Google Scholar Mckinnon, E. A., K. C. Fraser, and B. J. M. Stutchbury. 2013. New discoveries i
Referência(s)