Neutrino physics with JUNO
2016; IOP Publishing; Volume: 43; Issue: 3 Linguagem: Inglês
10.1088/0954-3899/43/3/030401
ISSN1361-6471
AutoresFengpeng An, Guangpeng An, Qi An, V. Antonelli, E. Baussan, J. F. Beacom, L. Bezrukov, S.C. Blyth, R. Brugnera, M. Buizza Avanzini, José Busto, A. Cabrera, Hao Cai, X. Cai, Antonio Cammi, G. F. Cao, Jun Cao, Yun Chang, Shaomin Chen, S. J. Chen, Yixue Chen, D. Chiesa, M. Clemenza, Barbara Clerbaux, J. M. Conrad, D. D’Angelo, Hervé de Kerret, Zhi Deng, Z. Y. Deng, Yayun Ding, Zelimir Djurcic, Damien Dornic, M. Dracos, Olivier Drapier, S. Dusini, Stephen T. Dye, T. Enqvist, Donghua Fan, J. Fang, L. Favart, R. Ford, M. Göger‐Neff, Haonan Gan, A. Garfagnini, Marco Giammarchi, M. Gonchar, G. Gong, Hui Gong, Michel Gonin, M. Grassi, Christian Grewing, Mengyun Guan, V. Guarino, Gang Guo, Wanlei Guo, Xin-Heng Guo, Caren Hagner, Ran Han, Miao He, Y. K. Heng, Y. Hsiung, Jun Hu, Shouyang Hu, Tao Hu, Han‐Xiong Huang, Xingtao Huang, Lei Huo, Ara Ioannisian, M. Jeitler, Xiangdong Ji, Xiaoshan Jiang, C. Jollet, L. Kang, M. Karagounis, Narine Kazarian, Zinovy Krumshteyn, A. Kruth, P. Kuusiniemi, Tobias Lachenmaier, R. Leitner, Chao Li, Jiaxing Li, Weidong Li, Weiguo Li, Xiaomei Li, Xiaonan Li, Yi Li, Yufeng Li, Zhi-Bing Li, H. Liang, Guey-Lin Lin, T. Lin, Yen-Hsun Lin, Jiajie Ling, I. Lippi, Dawei Liu, H. Liu, Hu Liu, Jianglai Liu, Jianli Liu, Jinchang Liu, Qian Liu, Shubin Liu, Shulin Liu, P. Lombardi, Yongbing Long, Haoqi Lu, J. G. Lu, Jingbin Lu, J. S. Lu, Б. К. Лубсандоржиев, L. Ludhová, Shu Luo, Vladimir Lyashuk, R. Möllenberg, Xubo Ma, Fabio Mantovani, Yajun Mao, Stefano Maria Mari, W. F. McDonough, Guang Wei Meng, A. Meregaglia, Emanuela Meroni, M. Mezzetto, L. Miramonti, Th. A. Mueller, D. Naumov, Lothar Oberauer, J. P. Ochoa‐Ricoux, A. Olshevskiy, F. Ortica, A. Paoloni, Haiping Peng, Jen-Chieh Peng, E. Previtali, Ming Qi, S. Qian, X. Qian, Yongzhong Qian, Zhonghua Qin, Georg G. Raffelt, G. Ranucci, Barbara Ricci, Markus Robens, A. Romani, Xiangdong Ruan, Xichao Ruan, G. Salamanna, Mike Shaevitz, V. V. Sinev, C. Sirignano, M. Sisti, O. Smirnov, M. Soiron, A. Stahl, L. Stančo, Jochen Steinmann, X. Sun, Yongjie Sun, D. Taichenachev, J. Tang, I. Tkachev, W. H. Trzaska, Stefan van Waasen, Cristina Volpe, V. Vorobel, L. Votano, En Wang, Guoli Wang, Hao Wang, Meng Wang, Ruiguang Wang, Siguang Wang, Wei Wang, Yi Wang, Y. F. Wang, Y. F. Wang, Zhe Wang, Zheng Wang, Zhi Gang Wang, Zhimin Wang, Wei Wei, Liangjian Wen, C. H. Wiebusch, Björn Wonsak, Qun Wu, Claudia-Elisabeth Wulz, M. Wurm, Yufei Xi, Dongmei Xia, Yuguang Xie, Zhi‐zhong Xing, Jilei Xu, Baojun Yan, Changgen Yang, Chaowen Yang, Guang Yang, Lei Yang, Y. F. Yang, Yao Yu, Ugur Yegin, Ziping Ye, Z. You, Boxiang Yu, Chunxu Yu, Zeyuan Yu, S. Zavatarelli, Liang Zhan, C. Zhang, H. H. Zhang, Jiawen Zhang, J. W. Zhang, Qingmin Zhang, Yumei Zhang, Zhenyu Zhang, Zhen-hua Zhao, Y. H. Zheng, W. L. Zhong, Guorong Zhou, Jing Zhou, Li Zhou, Rong Zhou, Shun Zhou, Wenxiong Zhou, Xiang Zhou, Ye-Ling Zhou, Yufeng Zhou, J. H. Zou,
Tópico(s)Dark Matter and Cosmic Phenomena
ResumoThe Jiangmen Underground Neutrino Observatory (JUNO), a 20 kton multi-purpose underground liquid scintillator detector, was proposed with the determination of the neutrino mass hierarchy as a primary physics goal. It is also capable of observing neutrinos from terrestrial and extra-terrestrial sources, including supernova burst neutrinos, diffuse supernova neutrino background, geoneutrinos, atmospheric neutrinos, solar neutrinos, as well as exotic searches such as nucleon decays, dark matter, sterile neutrinos, etc. We present the physics motivations and the anticipated performance of the JUNO detector for various proposed measurements. By detecting reactor antineutrinos from two power plants at 53-km distance, JUNO will determine the neutrino mass hierarchy at a 3-4 sigma significance with six years of running. The measurement of antineutrino spectrum will also lead to the precise determination of three out of the six oscillation parameters to an accuracy of better than 1\%. Neutrino burst from a typical core-collapse supernova at 10 kpc would lead to ~5000 inverse-beta-decay events and ~2000 all-flavor neutrino-proton elastic scattering events in JUNO. Detection of DSNB would provide valuable information on the cosmic star-formation rate and the average core-collapsed neutrino energy spectrum. Geo-neutrinos can be detected in JUNO with a rate of ~400 events per year, significantly improving the statistics of existing geoneutrino samples. The JUNO detector is sensitive to several exotic searches, e.g. proton decay via the $p\to K^++\barν$ decay channel. The JUNO detector will provide a unique facility to address many outstanding crucial questions in particle and astrophysics. It holds the great potential for further advancing our quest to understanding the fundamental properties of neutrinos, one of the building blocks of our Universe.
Referência(s)