Artigo Revisado por pares

CD73 (ecto‐5’‐nucleotidase) on blood mononuclear cells

1997; Wiley; Volume: 105; Issue: S73 Linguagem: Inglês

10.1111/j.1600-0463.1997.tb05603.x

ISSN

1600-0463

Autores

Lisa Dalh Christensen,

Tópico(s)

Neonatal Health and Biochemistry

Resumo

APMISVolume 105, Issue S73 p. 5-28 CD73 (ecto-5'-nucleotidase) on blood mononuclear cells Regulation of ecto-5'-nucleotidase activity and antigenic heterogeneity of CD73 on blood mononuclear cells from healthy donors and from patients with immunodeficiency LISA DALH CHRISTENSEN, LISA DALH CHRISTENSEN Department of Clinical Immunology (The Centre of Laboratory Medicine and Pathology) and Department of Infectoius Diseases M (The RHIMA Centre) Rigshospitalet Copenhagen University Hospital, DenmarkSearch for more papers by this author LISA DALH CHRISTENSEN, LISA DALH CHRISTENSEN Department of Clinical Immunology (The Centre of Laboratory Medicine and Pathology) and Department of Infectoius Diseases M (The RHIMA Centre) Rigshospitalet Copenhagen University Hospital, DenmarkSearch for more papers by this author First published: 11 October 2011 https://doi.org/10.1111/j.1600-0463.1997.tb05603.xCitations: 4AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat REFERENCES Amano S., Hazama F., Kawai J., Sasahara M. Increased 5′-nucleotidase activity induced by dibutyryl cyclic AMP treatment of cultured glial cells. Brain Res 1990; 506(2): 254–8. 10.1016/0006-8993(90)91259-J CASPubMedWeb of Science®Google Scholar Andree T., Gutensohn W., Kummer U. Is ecto-5′-nucleotidase essential for stimulation of human lymphocytes? Evidence against a role of the enzyme as mitogenic lectin receptor. Immunobiol 1987; 175(3): 214–25. 10.1016/S0171-2985(87)80030-X CASWeb of Science®Google Scholar Appelboom T., Mandelbaum I., Vertongen F. Purine enzyme levels in rheumatoid arthritis. J Rheumatol 1985; 12(6): 1075–8. CASPubMedWeb of Science®Google Scholar Armstrong MA, Shah S., Hawkins SA, Bell AL, Roberts SD. Reduction of monocyte 5′nucleotidase activity by γ-interferon in multiple sclerosis and autoimmune diseases. Ann Neurol 1988; 24(1): 12–6. 10.1002/ana.410240104 CASPubMedWeb of Science®Google Scholar Bailyes EM, Soos M., Jackson P., Newby AC, Siddle K., Luzio JP. The existence and properties of two dimers of rat liver ecto-5′-nucleotidase. Biochem J 1984; 221(2): 369–77. 10.1042/bj2210369 CASPubMedWeb of Science®Google Scholar Baron MD, Luzio JP. The synthesis and turnover of 5′-nucleotidase in primary cultured hepatocytes. Biochim Biophys Acta 1987; 927(1): 81–5. 10.1016/0167-4889(87)90068-1 CASPubMedWeb of Science®Google Scholar Barwick SE, Malkovsky M., Webster ADB, Peters TJ. A kinetic analysis of lymphocyte 5′-nucleotidase in B-cell clones from control subjects and patients with primary hypogammaglouinaeia. J Clin Lab Immunol 1989; 30(3): 117–20. CASPubMedWeb of Science®Google Scholar Bastian JF, Ruedi JM, MacPherson GA, Golembesky HE, O'Connor RD, Thompson LF. Lymphocyte ecto-5′-nucleotidase activity in infancy: increasing activity in peripheral blood B cells precedes their ability to synthesize IgG in vitro. J Immunol 1984; 132(4): 1767–72. CASPubMedWeb of Science®Google Scholar Bohuslav J., Cinek T., Horejsi V. Large, detergent-resistant complexes containing murine antigens Thy-1 and Ly-6 and protein tyrosine kinase p56lck. Eur J Immunol 1993; 23: 825–31. 10.1002/eji.1830230409 CASPubMedWeb of Science®Google Scholar Bonnafous JC, Dornand J., Favero J., Mani JC. Lymphocyte membrane adenosine receptors coupled to adenylate cyclase. Properties and occurrence in various lymphocyte subclasses. J Recept Res 1982; 2: 347–66. 10.3109/107998981809038872 CASWeb of Science®Google Scholar van den Bosch R., Geuze HJ, Du Maine APM, Strous GJ. Transport and metabolism of 5′-nucleoidase in a rat hepatoma cell line. Eur J Biochem 1986; 160(1): 49–54. 10.1111/j.1432-1033.1986.tb09938.x PubMedWeb of Science®Google Scholar Boss GR, Thompson LF, Spiegelberg HL, Pichler WJ, Seegmiller JE. Age-dependency of lymphocyte ecto-5′-nucleotidase activity. J Immunol 1980; 125(2): 679–82. CASPubMedWeb of Science®Google Scholar Boyle JM, Hey Y., Van Kessel AG, Fox M. Assignment of ecto-5′-nucleotidase to human chromosome 6. Human Genet 1988; 81: 88–92. 10.1007/BF00283737 CASPubMedWeb of Science®Google Scholar Boyle JM, Hey Y., Grzeschik KH, Thompson L., Munro E., Fox M. Regional localization of human ecto-5′nucleotidase to chromosome 6q14–q21. Hum Genet 1989; 83(2): 179–80. 10.1007/BF00286714 CASPubMedWeb of Science®Google Scholar Burgemeister R., Danescu I., Gutensohn W. Glycosylation and processing of carbohydrate side chains of ecto-5′-nucleotidase in cultured human chorionic cells. Biol Chem Hoppe Seyler 1990; 371(4): 355–61. 10.1515/bchm3.1990.371.1.355 CASPubMedWeb of Science®Google Scholar Burger RM, Lowenstein JM. Preparation and properties of 5′-nucleotidase from smooth muscle of small intestine. J Biol Chem 1970; 245(23): 6274–80. CASPubMedWeb of Science®Google Scholar Buschette-Brambrink S., Gutensohn W. Human placental ecto-5′-nucleotidase: isoforms and chemical crosslinking products of the membrane-bound and isolated enzyme. Biol Chem Hoppe-Seyler 1989; 370(1): 67–74. 10.1515/bchm3.1989.370.1.67 CASPubMedWeb of Science®Google Scholar Chalmers AH, Hare C., Woolley G., Frazer IH. Lymphocyte ectoenzyme activity compared in healthy persons and patients seropositive to or at high risk of HIV infection. Immunol Cell Biol 1990; 68 (Pt 2): 81–5. 10.1038/icb.1990.12 PubMedWeb of Science®Google Scholar Chen X., Catravas JD. PMA-activated neutrophils decrease pulmonary endothelial ectoenzyme activities in perfused rabbit lungs. Am J Physiol 1992; 263: 1650–6. Google Scholar Christensen LD, Svenson M., Nygaard P., Andersen V., Faber V. Decreased B lymphocyte ecto-5′nucleotidase and increased adenosine deaminase in mononuclear cells from patients infected with human immunodeficiency virus. APMIS 1988; 96(10): 882–8. 10.1111/j.1699-0463.1988.tb00955.x PubMedWeb of Science®Google Scholar Christensen LD, Faber V., Mejer J., Nygaard P. Low 5′nucleotidase activity in mononuclear cells of patients with defect T-cell function. Adv Exp Med Biol 1989; 253B: 135–9. 10.1007/978-1-4684-5676-9_21 CASPubMedWeb of Science®Google Scholar Christensen LD, Andersen V., Nygaard P., Svenson M. In vitro changes in levels of ecto-5′-nuleiase activity of mononuclear cells from human blood. Int J Purine Pyrimidine Res 1991; 2: 81–6. Google Scholar Christensen LD, Andersen V. Natural killer cells lack ecto-5′-nucleotidase. Nat Immun 1992; 11(1): 1–6. PubMedWeb of Science®Google Scholar Christensen LD, Andersen V., Nygaard P., Bendtzen K. Effect of immunomodulators on ecto-5′-nucleotidase activity on blood mononuclear cells. Scand J Immunol 1992; 35(4): 407–13. 10.1111/j.1365-3083.1992.tb02875.x CASPubMedWeb of Science®Google Scholar Christensen LD. No correlation between CD73 expression and ecto-5′-nucleotidase activity on blood mononuclear cells in vitro. Evidence of CD73 (ecto-5′-nucleotidase) on blood mononuclear cells with distinct antigenic properties. APMIS 1996a; 104(2): 126–134. 10.1111/j.1699-0463.1996.tb00697.x CASPubMedWeb of Science®Google Scholar Christensen LD, Andersen V., Ryder LP. Decreased number of CD73 (ecto-5-nucleotidase) molecules on lymphocytes from patients with primary immunoglobulin deficiencies. Correlation between number of CD73 molecules and T-lymphocyte function in vitro. 1996b, Scand J Immunol. 1996; 44(1). 62–70. 10.1046/j.1365-3083.1996.d01-281.x CASPubMedWeb of Science®Google Scholar Chuang NN, Newby AC, Luzio JP. Characterization of different molecular forms of 5′-nucleotiase in normal serum and in serum from cholestatic patients and bile-duct-ligated rats. Biochem J 1984; 224(3): 689–95. 10.1042/bj2240689 CASPubMedWeb of Science®Google Scholar Cinek T., Horejsi V. The nature of large noncovalent complexes containing glycosyl-phosphaidylnoitol-anchored membrane glycoproteins and protein kinases. J Immunol 1992; 149: 2262–70. CASPubMedWeb of Science®Google Scholar Cohen A., Mansour A., Dosch HM, Gelfand EW. Association of a lymphocyte purine enzyme deficiency (5′-nucleotidase) with combined immunodeficiency. Clin Immunol Immunopathol 1980a; 15(2): 245–50. 10.1016/0090-1229(80)90035-5 CASPubMedWeb of Science®Google Scholar Cohen A., Lee JWW, Dosch HM, Gelfand EW. The expression of deoxyguanosine toxicity in T lymphocytes at different stages of maturation. J Immunol 1980b; 125(4): 1578–82. CASPubMedWeb of Science®Google Scholar Dianzani U., Redoglia V., Bragardo M., Attisano C., Bianchi A., Franco DD, Ramenghi U., Wolff H., Thompson LF, Pileri A., Massaia M. Co-stimulatory signal delivered by CD73 molecule to human CD45RAhiCD45R0lo (naive) CD8+ T lymphocytes. J Immunol 1993; 151: 3961–70. CASPubMedWeb of Science®Google Scholar Dieckhoff J., Knebel H., Heidemann M., Mannherz HG. An improved procedure for purifying 5′-nucleotidase from various sources. Evidence for tissue and species differences in their molecular mass and affinity for F-actin. Eur J Biochem 1985; 151(2): 377–83. 10.1111/j.1432-1033.1985.tb09112.x CASPubMedWeb of Science®Google Scholar Dissing J., Knudsen B. Adenosine-deaminase deficiency and combined immunodeficiency syndrome. Lancet 1972 Dec 16; 2(790): 1316. 10.1016/S0140-6736(72)92692-X CASPubMedWeb of Science®Google Scholar Dorken B., Moller P., Pezzutto A., Schwartz-Albiez R., Moldenhauer G. B-cell antigens: CD73. In: Leukocyte typing IV. White Cell Differentiation Antigens. Edt. Knapp et al. Oxford University Press 1989 102–4. Google Scholar Dornand J., Bonnafous JC, Mani JC. Purification and properties of 5′-nucleotidase from lymphoyte plasma membranes. Eur J Biochem 1978; 87(3): 459–65. 10.1111/j.1432-1033.1978.tb12396.x CASPubMedWeb of Science®Google Scholar Draberova L., Draber P. Thy-1 glycoprotein and src-like protein-tyrosine kinase p53/p56lyn are associated in large detergent resistant complexes in rat basophilic leukaemia cells. Proc Natl Acad Sci 1993; 90: 3611–5. 10.1073/pnas.90.8.3611 CASPubMedWeb of Science®Google Scholar Edelson PJ, Schwaber J. Normal levels of 5′-nucleotidase activity in lymphocytes from patients with X-linked agammaglobulinemia. Science 1979; 205(4405): 520–1. 10.1126/science.451618 CASPubMedWeb of Science®Google Scholar Edwards NL, Recker D., Manfredi J., Rembecki R., Fox IH. Regulation of purine metabolism by plasma membrane and cytoplasmic 5′-nucleotidases. Am J Physiol 1982; 243(5): C270–7. 10.1152/ajpcell.1982.243.5.C270 CASPubMedWeb of Science®Google Scholar Fleit H., Conklyn M., Stebbins RD, Silber R. Function of 5′-nucleotidase in the uptake of adenosine from AMP by human lymphocytes. J Biol Chem 1975; 250(23): 8889–92. CASPubMedWeb of Science®Google Scholar Forsman CA, Gustafsson LE. Cytochemical localization of 5′-nucleotidase in the enteric ganglia and in smooth muscle cells of the guinea-pig. J Neurocyt 1985; 14: 551–62. 10.1007/BF01200797 PubMedWeb of Science®Google Scholar Fukunaga Y., Evans SS, Yamamoto M., Ueda Y., Tamura K., Takakuwa T., Gebhard D., Allopenna J., Demaria S., Clarkson B. et al., Increased density of ecto 5′ nucleotidase antigen on leukemic T cells from patients with cutaneous T-cell lymphoma and adult T-cell leukemia/lymphoma. Blood 1989; 74(7): 2486–92. CASPubMedWeb of Science®Google Scholar Gadeberg O., Andersen V., Cohn J., Hesse J., Mejer J., Nygaard P., Petersen J., Faber V. Clinical symptoms, immunoglobulin levels, immunoglobulin secreting cell numbers and mononuclear cell purine enzyme activities during the course of infectious mononucleosis. Dan Med Bull 1984; 31(6): 507–11. CASPubMedWeb of Science®Google Scholar Gelfand EW, McCurdy D., Rao CP, Cohen A. Absence of lymphocyte ecto-5′-nucleotidase in infants with reticuloendotheliosis and eosinophilia (Omenn's syndrome). Blood 1984; 63(6): 1475–80. CASPubMedWeb of Science®Google Scholar Gerber PS, Herrod HG. 5′nucleotidase activity in mitogen-stimulated adult and cord blood lymphocyte cultures. Pediatr Res 1983; 17(6): 474–7. 10.1203/00006450-198306000-00010 CASPubMedWeb of Science®Google Scholar Giblett ER, Anderson JE, Cohen F., Pollara B., Meuwissen HJ. Adenosine-deaminase deficiency in two patients with severely impaired cellular immunity. Lancet 1972; 2(786): 1067–9. 10.1016/S0140-6736(72)92345-8 PubMedWeb of Science®Google Scholar Giblett ER, Ammann AJ, Wara DW, Sandman R., Diamond LK. Nucleoside phosphorylase deficiency in a child with severely defective T-cell immunity and normal B-cell immunity. Lancet 1975; 1(7914): 1010–3. 10.1016/S0140-6736(75)91950-9 PubMedWeb of Science®Google Scholar Gregory SH, Kern M. The heterogeneous distribution of 5′-nucleotidase among rabbit lymphocytes. J Immunol 1979; 123(3): 1078–82. CASPubMedWeb of Science®Google Scholar Gutensohn W., Thiel E. Prognostic implication of ecto-5′-nucleotidase activity in acute lympholastic leukemia. Cancer 1990; 66(8): 1755–8. 10.1002/1097-0142(19901015)66:8 3.0.CO;2-J PubMedWeb of Science®Google Scholar Gutensohn W., Resta R., Misumi Y., Ikehara Y., Thompson LF. Ecto-5′-nucleotidase activity is not required for T cell activation through CD73. Cell Immunology 1995; 161: 213–7. 10.1006/cimm.1995.1029 CASPubMedWeb of Science®Google Scholar Ho AD, Stehle B., Dietz G., Hunstein W., Hoffbrand AV. Terminal differentiation of cord blood lymphocytes induced by thymosin fraction 5 and thymosin alpha 1. Scand J Immunol 1985; 21(3): 221–5. 10.1111/j.1365-3083.1985.tb01424.x CASPubMedWeb of Science®Google Scholar Ho AD, Dietz G., Trede I., Schwartz R., Hoffbrand AV, Hunstein W. Enzymes of purine metabolism in hairy cell leukemia. Cancer 1986; 58(1): 96–9. 10.1002/1097-0142(19860701)58:1 3.0.CO;2-3 CASPubMedWeb of Science®Google Scholar Ho AD, Stehle B., Birr C., Heinzel W., Nebe TC. Differentiation changes in cord blood T lymphocytes induced by synthetic C-terminal peptides of thymosin alpha 1. Thymus 1987; 9(2): 77–84. CASPubMedWeb of Science®Google Scholar Johnson SM, Asherson GL, Watts RWE, North ME, Allsop J., Webster ADB. Lymphocyte purine 5′-nucleotidase deficiency in primary hypogammaglobulinæmia. Lancet 1977 Jan 22; 168–70. Google Scholar Johnson SM. The effect of interferon-alpha on the ecto 5′-nucleotidase of human lymphoblatoid B-cell lines depends on the class of immunoglobulin secreted. Immunology 1991; 74: 44–9. CASPubMedWeb of Science®Google Scholar King ME, Honeysett JM, Howell SB. Regulation of de novo purine synthesis in human bone marrow mononuclear cells by hypoxanthine. J Clin Invest 1983; 72: 965–70. 10.1172/JCI111068 CASPubMedWeb of Science®Google Scholar Kitakaze M., Hori M., Morioka T., Minamino T., Takashima S., Sato H., Shinozaki Y., Chujo M., Mori H., Inoue M. et al., Infarct size-limiting effect of ischemic preconditioning is blunted by inhibition of 5′-nucleotidase activity and attenuation of adenosine release. Circulation 1994a; 89(3): 1237–46. 10.1161/01.CIR.89.3.1237 CASPubMedWeb of Science®Google Scholar Kitakaze M., Hori M., Morioka T., Minamino T., Takashima S., Sato H., Shinozaki Y., Chujo M., Mori H., Inoue M., Kamada T. Alpha1-adenoreceptor activation mediates the infarct size-limiting effect of ischemic preconditioning through augmentation of 5′-nucleotidase activity. J Clin Invest 1994b; 93: 2197–2205. 10.1172/JCI117216 CASPubMedWeb of Science®Google Scholar Klemens MR, Sherman WR, Holmberg NJ, Ruedi JM, Low MG, Thompson LF. Characterization of soluble vs membrane-bound human placental 5′-nucleotidase. Biochem Biophys Res Commun 1990; 172(3): 1371–7. 10.1016/0006-291X(90)91601-N CASPubMedWeb of Science®Google Scholar Klip A., Ramlal T., Douen AG, Burdett E., Young D., Cartee GD, Holloszy JO. Insulin-induced decrease in 5′-nucleotidase activity in skeletal muscle membranes. FEBS Lett 1988; 238(2): 419–23. 10.1016/0014-5793(88)80524-6 CASPubMedWeb of Science®Google Scholar Kwong YL, Lee CP, Chan TK, Chan LC. Flow cytometric measurement of glycosylphosphatiyl-inositol-linked surface proteins on blood cells of patients with paroxysmal nocturnal hemoglobinuria. Hemopathology 1994; 102(1): 30–5. PubMedWeb of Science®Google Scholar Lambert LE, Paulnock DM. Differential induction of activation markers in macrophage cell lines by interferon-g. Cell Immunol 1989; 120(2): 401–18. 10.1016/0008-8749(89)90208-6 CASPubMedWeb of Science®Google Scholar Lee JD, Kravchenko V., Kirkland TN, Han J., Mackman N., Moriatry A., Leturcq D., Tobias PS, Ulevitch RJ. Glycosyl-phosphatidylinositol-anchored or integral membrane forms of CD14 mediate identical cellular responses to endotoxin. Proc Natl Acad Sci 1993; 90: 9930–4. 10.1073/pnas.90.21.9930 CASPubMedWeb of Science®Google Scholar Losa G., Morell A., Brarandun S. Correlations between enzymatic and immunologic properties of human peripheral blood mononuclear cells. I. Ectoenzymes of normal and immunodeficient peripheral blood mononuclear cells. Am J Pathol 1982; 107(2): 191–201. CASPubMedWeb of Science®Google Scholar Losa GA. Enzymatic imbalance in peripheral blood mononuclear cells isolated from individuals with anti-HIV antibodies. Clin Biochem 1989; 22(4): 321–8. 10.1016/S0009-9120(89)80026-8 CASPubMedWeb of Science®Google Scholar Madrid-Marina V., Fox IH. Human placental cytoplasmic 5′-nucleotidase. Kinetic properties and inhibition. J Biol Chem 1986; 261(1): 444–52. CASPubMedWeb of Science®Google Scholar Marone G., Plaut M., Lichtenstein LM. Characterization of a specific adenosine receptor on human lymphocytes. J Immunol 1978; 11(6): 2153–9. Google Scholar Massaia M., Pileri A., Boccadoro M., Bianchi A., Palumbo A., Dianzani U. The generation of alloreactive cytotoxic T lymphocytes requires the expression of ecto-5′nucleotidase activity. J Immunol 1988; 141(11): 3768–75. CASPubMedWeb of Science®Google Scholar Massaia M., Perrin L., Bianchi A., Ruedi J., Attisano C., Altieri D., Rijkers GT, Thompson LF. Human T cell activation. Synergy between CD73 (ecto-5′-nucleotidase) and signals delivered through CD3 and CD2 molecules. J Immunol 1990; 145(6): 1664–74. CASPubMedWeb of Science®Google Scholar Matamoros N., Horwitz DA, Newton C., Asherson GL, Webster ADB. Histochemical studies for 5′-nucleotidase and alpha-naphthyl (non-specific) esterase in lymphocytes from patients with primary immunoglobulin deficiencies. Clin Exp Immunol 1979; 36(1): 102–6. CASPubMedWeb of Science®Google Scholar Mayor S., Rothberg KG, Maxfield FR. Sequestration of GPI-anchored proteins in caveolae triggered by cross-linking. Science 1994; 264: 1948–51. 10.1126/science.7516582 CASPubMedWeb of Science®Google Scholar Meflah K., Bernard S., Massoulie J. Interactions with lectins indicate differences in the carbohydrate composition of the membrane-bound enzymes acetylcholinesterase and 5′-nucleotidase in different cell types. Biochimie 1984; 66(1): 59–69. 10.1016/0300-9084(84)90192-5 CASPubMedWeb of Science®Google Scholar Misumi Y., Ogata S., Hirose S., Ikehara Y. Primary structure of rat liver 5′-nucleotidase deduced from the cDNA. Presence of the COOH-terminal hydrophobic domain for possible post-translaioal modification by glycophospholipid. J Biol Chem 1990a; 265(4): 2178–83. CASPubMedWeb of Science®Google Scholar Misumi Y., Ogata S., Ohkubo K., Hirose S., Ikehara Y. Primary structure of human placental 5′-nucleotidase and identification of the glycolipid anchor in the mature form. Eur J Biochem 1990b; 191(3): 563–9. 10.1111/j.1432-1033.1990.tb19158.x CASPubMedWeb of Science®Google Scholar Moldenhauer G., Schwartz-Albiez R. Immunochemistry and epitope analysis using CD72, CD73, CD74, CDw75, CD76, CD77, CDw78 and unclustered mAb. In: Leukocyte Typing Workshop IV. White Cell Differentiation Antigens. Edt. Knapp et al., Oxford University Press 1989 154–62. Google Scholar Murray JL, Reuben JM, Munn CG, Mansell PWA, Newell GR, Hersh EM. Decreased 5′nucleotidase activity in lymphocytes from asymptomatic sexually active homosexual men and patients with the acquired immune deficiency syndrome. Blood 1984; 64(5): 1016–21. CASPubMedWeb of Science®Google Scholar Murray JL, Reuben JM, Munn CG, Newell G., Mansell PWA, Hersh EM. In vitro modulation of purine enzyme metabolism and lymphocyte surface marker expression by thymosin fraction 5 in homosexual males. Int J Immunopharm 1985; 7(5): 661–9. 10.1016/0192-0561(85)90150-X CASPubMedWeb of Science®Google Scholar Murray JL, Bywaters DW, Reuben JM, Mansell PW, Hersh EM. Decreased 5′-nucleotidase activity in suppressor (OKT8) T lymphocytes from homosexuals with AIDS-related complex: nonassociation with enhanced deoxynucleoside toxicity. Clin Immunol Immunopathol 1987; 42(1): 10–7. 10.1016/0090-1229(87)90168-1 CASPubMedWeb of Science®Google Scholar Murray JL, Mehta K., Lopez-Berestein G. Induction of adenosine deaminase and 5′nucleotidae activity in cultured human blood monocytes and monocytic leukemia (THP-1) cells by differentiating agents. J Leukoc Biol 1988; 44(3): 205–11. 10.1002/jlb.44.3.205 CASPubMedWeb of Science®Google Scholar Naito Y., Lowenstein JM. 5′-Nucleotidase from rat heart. Biochemistry 1981; 20(18): 5188–94. 10.1021/bi00521a014 CASPubMedWeb of Science®Google Scholar Pezzutto A., Dorken B., Valentine MA, Shu GL, Clark EA. Activation and proliferation of human B-cells: effects of mAb in the B-cell panel of the Fourth International Workshop. In: Leukocyte Typing Workshop IV. White Cell Differentiation Antigens. Edt. Knapp et al., Oxford University Press 1989 178–82. Google Scholar Pezzutto A., Thompson LF, Dorken B., Draves K., Clark EA. The plasma membrane enzyme 5′-ecto-nucleotidase (CD73) regulates B cell activation. J Cell Biochem 1990;suppl 14D: 263. Google Scholar Picker LJ, Raff HV, Goldyne ME, Stobo JD. Metabolic heterogeneity among human monocytes and its modulation by PGE2. J Immunol 1980; 124(6): 2557–62. CASPubMedWeb of Science®Google Scholar Pieters R., Thompson LF, Broekema GJ, Huismans DR, Peters GJ, Pals ST, Horst E., Hahlen K., Veerman AJP. Expression of 5′-nucleotidase (CD73) related to other differentiation antigens in leukemias of B-cell lineage. Blood 1991; 78(2): 488–92. CASPubMedWeb of Science®Google Scholar Pieters R., Huismans DR, Loonen AH, Peters GJ, Hahlen, K., van der Does-van den Berg A., Van Wering ER, Veerman AJP. Relation of 5′-nucleotidase and phosphatase activities with immunophenotype, drug resistance and clinical prognosis in childhood leukemia. Leuk Res 1992; 16(9): 873–80. 10.1016/0145-2126(92)90033-4 CASPubMedWeb of Science®Google Scholar Ramos-Salazar A., Baines AD. Role of 5′-nucleotidase in adenosine-mediated renal vasocontricion during hypoxia. J Pharmacol Exp Ther 1986; 236(2): 494–9. CASPubMedWeb of Science®Google Scholar Recker DP, Edwards NL, Fox IH. Histochemical evaluation of lymphocytes in hypogammaglouieia. Decreased number of 5′-nucleotidase-positive cells. J Lab Clin Med 1980; 95(2): 175–9. CASPubMedWeb of Science®Google Scholar Resta R., Hooker SW, Hansen KR, Laurent AB, Park JL, Blackburn MR, Knudsen TB, Thompson LF. Murine ecto-5′-nucleotidase (CD73): cDNA cloning and tissue distribution. Gene 1993; 133: 171–7. 10.1016/0378-1119(93)90635-G CASPubMedWeb of Science®Google Scholar Resta R., Hooker SW, Laurent AB, Shuck JK, Misumi Y., Ikehera Y., Koretzky GA, Thompson LF. Glycosyl Phosphatidylinositol membrane anchor is not required for T cell activation through CD73. J Immunol 1994; 153: 1046–53. CASPubMedWeb of Science®Google Scholar Robinson PJ, Millrain M., Antoniou J., Simpson E., Mellor AL. A glycophospholipid anchor is required for Qa-2-mediated T cell activation. Nature 1989; 342: 85–7. 10.1038/342085a0 CASPubMedWeb of Science®Google Scholar Rowe M., De Gast GC, Platts-Mills TAE, Asherson GL, Webster ADB, Johnson SM. Lymphocyte 5′-nucleotidase in primary hypogammaglobulinaemia and cord blood. Clin Exp Immunol 1980; 39(2): 337–43. CASPubMedWeb of Science®Google Scholar Salazar-Gonzalez JF, Moody DJ, Giorgi JV, Martinez-Maza O., Mitsuyasu RT, Fahey JL. Reduced ecto-5′-nucleotidase activity and enhanced OKT10 and HLA-DR expression on CD8 (T suppressor/cytotoxic) lymphocytes in the acquired immune deficiency syndrome: evidence of CD8 cell immaturity. J Immunol 1985; 135(3): 1778–85. CASPubMedWeb of Science®Google Scholar Sargiacomo M., Sudol M., Tang ZL, Lisanti MP. Signal transducing molecules and glycosyl-phoshaiylnoiol-linked proteins form a caveolin-rich insoluble complex in MDCK cells. J Cell Biol 1993; 122(4): 789–807. 10.1083/jcb.122.4.789 CASPubMedWeb of Science®Google Scholar Savic V., Stefanovic V., Ardaillou N., Ardaillou R. Induction of ecto-5′-nucleotidase of rat cultured mesangial cells by interleukin-1β and tumour necrosis factor-α. Immunology 1990; 70(3): 321–6. CASPubMedWeb of Science®Google Scholar Savic V., Blanchard A., Vlahovic P., Stefanovic V., Ardaillou N., Ardaillou R. Cyclic adenosine monophosphate-stimulating agents induce ecto-5′-nucleotidase activity and inhibit DNA synthesis in rat cultured mesangial cells. Arch Biochem Biophys 1991; 290(1): 202–6. 10.1016/0003-9861(91)90609-M CASPubMedWeb of Science®Google Scholar Shah T., Webster ADB, Peters TJ. Kinetic properties of 5′nucleotidase in blood lymphocytes from healthy subjects, immunodeficient patients and cord blood. Clin Exp Immunol 1984; 57(1): 149–54. CASPubMedWeb of Science®Google Scholar Shah T., Simpson RJ, Webster ADB, Peters TJ. Uptake of free adenosine and adenosine from adenosine monophosphate by human peripheral blood lymphocytes: possible kinetic role for ecto-5′-nucleotidase in the regulation of intracellular adenosine. Clin Exp Immunol 1986; 66: 158–65. CASPubMedWeb of Science®Google Scholar Shenoy-Scaria AM, Kwong J., Fujita T., Olszowy MW, Shaw AS, Lublin DM. Signal transduction through decay-accelerating factor. Interaction of glycosyl-phosphatidylinositol anchor and protein tyrosine kinases p56lck and p59fyn 1. J Immunol 1992; 149(11): 3535–41. CASPubMedWeb of Science®Google Scholar Stanley KK, Edwards MR, Luzio JP. Subcellular distribution and movement of 5′-nucleotidase in rat cells. Biochem J 1980; 186(1): 59–69. 10.1042/bj1860059 CASPubMedWeb of Science®Google Scholar Stefanova I., Horejsi V., Ansotegui IJ, Knapp W., Stockinger H. GPI-anchored cell-surface molecules complexed to protein tyrosine kinases. Science 1991; 254: 1016–9. 10.1126/science.1719635 CASPubMedWeb of Science®Google Scholar Stefanovic V., Savic V., Vlahovic P., Ardaillou N., Ardaillou R. Macrophages selectively stimulate ecto-5′-nucleotidase activity of cultured mesangial cells. Kidney Int 1989; 36(2): 249–56. 10.1038/ki.1989.187 CASPubMedWeb of Science®Google Scholar Stefanovic V., Vlahovic P., Savic V., Ardaillou N., Ardaillou R. Adenosine stimulates 5′-nucleotiase activity in rat mesangial cells via A2 receptors. FEBS 1993; 331: 96–100. 10.1016/0014-5793(93)80304-D CASPubMedWeb of Science®Google Scholar Stefanovic V., Savic V., Valhovic P. Effect of dipyridamole on glomerular mesangial cell ecto-5′-nucleotidase expression. Experientia 1994; 50: 943–6. 10.1007/BF01923484 CASPubMedWeb of Science®Google Scholar Thomas PM, Samelson LE. The glucophosphatidylinositol-anchored Thy-1 molecule interacts with the p60fyn protein tyrosine kinase in T cells. J Biol Chem 1992; 267: 12317–22. CASPubMedWeb of Science®Google Scholar Thompson LF, Boss GR, Spiegelberg HL, Jansen IV, O'Connor RD, Waldmann TA, Hamburger RN, Seegmiller JE. Ecto-5′nucleotidase activity in T and B lymphocytes from normal subjects and patients with congenital X-linked agammaglobulinemia. J Immumol 1979; 123(6): 2475–78. CASPubMedWeb of Science®Google Scholar Thompson LF, Saxon A., O'Connor RD, Fox RI. Ecto-5′-nucleotidase activity on human T cell subsets. Decreased numbers of ecto-5′-nucleotidase positive cells from both OKT4+ and OKT8+ cells in patients with hypogammaglobulinemia. J Clin Invest 1983; 71: 892–9. 10.1172/JCI110843 CASPubMedWeb of Science®Google Scholar Thompson LF. Ecto-5′-nucleotidase can provide the total purine requirements of mitogen-stimulated human T cells and rapidly dividing human B lymphoblastoid cells. J Immunol 1985; 134(6): 3794–7. CASPubMedWeb of Science®Google Scholar Thompson LF, Ruedi JM, O'Connor RD, Bastian JF. Ecto-5′-nucleotidase expression during human B cell development. An explanation for the heterogeneity in B lymphocyte ecto-5′-nucleotidase activity in patients with hypogammaglobulinemia. J Immunol 1986; 137(8): 2496–500. CASPubMedWeb of Science®Google Scholar Thompson LF, Ruedi JM, Low MG, Clement LT. Distribution of ecto-5′-nucleotidase on subsets of human T and B lymphocytes as detected by indirect immunofluorescence using goat antibodies. J Immunol 1987; 139(12): 4042–8. CASPubMedWeb of Science®Google Scholar Thompson LF, Ruedi JM, Glass A., Low MG, Lucas AH. Antibodies to 5′-nucleotidase (CD73), a glycosyl-phosphatidylinositol-anchored protein, cause human peripheral blood T cells to proliferate. J Immunol 1989a; 143(6): 1815–21. CASPubMedWeb of Science®Google Scholar Thompson LF, Ruedi JM, Glass A., Lucas AH. Production of mAb to ecto-5′-nucleotidase: a glycosyl phosphatidylinositol-anchored differentiation antigen expressed on human T- and B-lymphocytes. in: Leukocyte Typing Workshop IV. White Cell Differentiation Antigens. Oxford University Press, New York. Edt. Knapp et al., Oxford University Press 1989b 104–6. Google Scholar Thompson LF, Ruedi JM. Functional characterization of ecto-5′-nucleotidase-positive and -negative human T lymphocytes. J Immunol 1989c; 142(5): 1518–22. CASPubMedWeb of Science®Google Scholar Thompson LF, Ruedi JM, Glass A., Moldenhauer G., Moller P., Low MG, Klemens MR, Massaia M., Lucas AH. Production and characterization of monoclonal antibodies to the glycosyl phosphatidylinositol-anchored lymphocyte differentiation antigen ecto-5′-nucleotidase (CD73). Tissue Antigens 1990; 35(1): 9–19. 10.1111/j.1399-0039.1990.tb01750.x PubMedWeb of Science®Google Scholar Thompson LF, Laurent AB, Franklin MK, Gutensohn W., Resta R. CD73 Workshop panel report. In: Leukocyte Typing Workshop V. White Cell Differentiation Antigens. Schlossman et al. Oxford University Press 1995 564–7. Web of Science®Google Scholar Vlahovic P., Stefanovic V. Effect of dopamine on ecto-5′-nucleotidase expression in human glomerular mesangial cells. Arch Int Physiol Biochim Biophys 1994; 102(3): 171–3. 10.3109/13813459409007533 CASPubMedWeb of Science®Google Scholar Volknandt W., Vogel M., Pevsner J., Misumi Y., Ikehara Y., Zimmermann H. 5′-nucleotidase from the electric ray electric lobe. Primary structure and relation to mammalian and procaryotic enzymes. Eur. J. Biochem. 1991; 202: 855–61. 10.1111/j.1432-1033.1991.tb16443.x CASPubMedWeb of Science®Google Scholar Webster ADB, North M., Allsop J., Asherson GL, Watts RWE. Purine metabolism in lymphocytes from patients with primary hypogammaglobulinaemia. Clin exp Immunol 1978; 31: 456–63. CASPubMedWeb of Science®Google Scholar Widnell CC, Schneider YJ, Pierre B., Baudhuin P., Trouet A. Evidence for a continual exchange of 5′-nucleotidase between the cell surface and cytoplasmic membranes in cultured rat fibrolasts. Cell 1982; 28: 61–70. 10.1016/0092-8674(82)90375-0 CASPubMedWeb of Science®Google Scholar van der Weyben MB, Rose IS, Newitt P. Folate-deficient human lymphoblasts: changes in de novo purine and pyrimidine synthesis and phosphoribosylpyrophosphate. Eur J Haematol 1991; 47: 213–8. PubMedWeb of Science®Google Scholar Zimmermann H. 5′-Nucleotidase: molecular structure and functional aspects. Biochem J 1992; 285 (Pt 2): 345–65. 10.1042/bj2850345 CASPubMedWeb of Science®Google Scholar Citing Literature Volume105, IssueS73October 1997Pages 5-28 ReferencesRelatedInformation

Referência(s)
Altmetric
PlumX