Artigo Acesso aberto Revisado por pares

The SNO+ experiment

2021; Institute of Physics; Volume: 16; Issue: 08 Linguagem: Inglês

10.1088/1748-0221/16/08/p08059

ISSN

1748-0221

Autores

V. Albanese, Rui Alves, Mark R. Anderson, S. Andringa, Luciano Anselmo, E. Arushanova, S. Asahi, M. Askins, D.J. Auty, H.O. Back, S. Bäck, F. Barão, Z. Barnard, A. Barr, N. Barros, D. Bartlett, R. Bayes, C. Beaudoin, E. W. Beier, G. Berardi, A. Białek, S.D. Biller, E. Blucher, R. Bonventre, M. G. Boulay, D. Braid, E. Caden, E. J. Callaghan, J. Caravaca Rodríguez, J. Carvalho, Luca Cavalli, D. Chauhan, M. Chen, O. Chkvorets, Kenneth Clark, B. Cleveland, C. Connors, D. Cookman, I. T. Coulter, M. A. Cox, David Cressy, X. Dai, C. Darrach, B. Davis-Purcell, C. Deluce, M. M. Depatie, F. Descamps, F. Di Lodovico, J. Dittmer, A. Doxtator, N. Duhaime, F. A. Duncan, Jack Dunger, A. Earle, D. Fabris, E. Falk, A. Farrugia, N. Fatemighomi, C. Felber, V. Fischer, E. Fletcher, R. Ford, K. Frankiewicz, N. Gagnon, A. Gaur, J. Gauthier, A. Gibson-Foster, K. Gilje, O. I. González-Reina, D. Gooding, P. Gorel, K. Graham, C. Grant, J. E. Grove, S. Grullon, E. Guillian, S. Hall, A. L. Hallin, D. Hallman, S. Hans, J. Hartnell, P. J. Harvey, M. Hedayatipour, W. J. Heintzelman, J. Heise, R. L. Helmer, B. Hodak, M. Hodak, Mike Hood, D. Horne, B. Hreljac, Jie Hu, S. Hussain, T. Iida, A. S. Inácio, C. M. Jackson, N.A. Jelley, C. Jillings, C. L. Jones, Paul Jones, K. Kamdin, T. Kaptanoglu, J. Kašpar, K. Keeter, C. Kéfélian, P. Khaghani, L. Kippenbrock, J. R. Klein, R. Knapik, J. Kofron, L. L. Kormos, Simon Korte, B. Krar, C. Kraus, C. B. Krauss, T. Kroupová, K. R. Labe, F. Lafleur, I. Lam, C. Lan, B.J. Land, R. Lane, S. Langrock, P. Larochelle, Simon Larose, A. Latorre, I. Lawson, L. Lebanowski, G. Lefeuvre, Edward J. Leming, A. Li, O. Li, J. Lidgard, B. Liggins, P. Liimatainen, Yen-Hsun Lin, X. Liu, Y. Liu, V. Lozza, M. Luo, S. Maguire, A. Maio, K. Majumdar, S. Manecki, J. Maneira, R. D. Martin, E. Marzec, A. Mastbaum, A. Mathewson, N. McCauley, A.B. McDonald, K. W. McFarlane, Pawel Mekarski, M. Meyer, C. Miller, C. Mills, M. Mlejnek, E. Mony, B. Morissette, I. Morton-Blake, M. Mottram, S. Nae, M. Nirkko, L. J. Nolan, В. М. Новіков, H. M. O’Keeffe, Erin O’Sullivan, G. D. Orebi Gann, M. J. Parnell, J. Paton, S. J. M. Peeters, T. Pershing, Z. Petriw, J. Petzoldt, L. Pickard, D. Pracsovics, G. Prior, J. C. Prouty, Sarah Quirk, Scott A. Read, A. Reichold, S. Riccetto, R. Richardson, M. Rigan, I. Ritchie, A. Robertson, B.C. Robertson, J. Rose, R. Rosero, P. M. Rost, J. Rumleskie, M. A. Schumaker, M. H. Schwendener, D. Ścisłowski, J. A. Secrest, M. Seddighin, L. Seguí, S. R. Seibert, I. Semenec, F. Shaker, T. Shantz, Manoj Kumar Sharma, T. M. Shokair, L. Sibley, J. Sinclair, K. Singh, P. Skensved, M. Smiley, T. Sonley, A Sörensen, M. St-Amant, R. Stainforth, S. Stankiewicz, M. Strait, M. Stringer, A. Stripay, R. Svoboda, Stefano Tacchino, B. Tam, Cynthia Tanguay, J. Tatar, Liyan Tian, N. Tolich, J. C-L. Tseng, H. Wan Chan Tseung, E. Turner, R. Van Berg, E. Vázquez-Jáuregui, J. G. C. Veinot, C.J. Virtue, B. von Krosigk, J. M. G. Walker, M. Walker, J. Wallig, S.C. Walton, J. Wang, M. Ward, O. Wasalski, J. Waterfield, Jan J. Weigand, Ryan White, J. R. Wilson, T. Winchester, P. Woosaree, A. Wright, Juan Pablo Yáñez, M. Yeh, T. Zhang, Yingdi Zhang, T. Zhao, K. Zuber, A. Zummo,

Tópico(s)

Dark Matter and Cosmic Phenomena

Resumo

The SNO+ experiment is located 2 km underground at SNOLAB in Sudbury, Canada. A low background search for neutrinoless double beta (0νββ) decay will be conducted using 780 tonnes of liquid scintillator loaded with 3.9 tonnes of natural tellurium, corresponding to 1.3 tonnes of 130Te. This paper provides a general overview of the SNO+ experiment, including detector design, construction of process plants, commissioning efforts, electronics upgrades, data acquisition systems, and calibration techniques. The SNO+ collaboration is reusing the acrylic vessel, PMT array, and electronics of the SNO detector, having made a number of experimental upgrades and essential adaptations for use with the liquid scintillator. With low backgrounds and a low energy threshold, the SNO+ collaboration will also pursue a rich physics program beyond the search for 0νββ decay, including studies of geo- and reactor antineutrinos, supernova and solar neutrinos, and exotic physics such as the search for invisible nucleon decay. The SNO+ approach to the search for 0νββ decay is scalable: a future phase with high 130Te-loading is envisioned to probe an effective Majorana mass in the inverted mass ordering region.

Referência(s)