Artigo Revisado por pares

Patterned Purkinje cell loss in the ataxic sticky mouse

2011; Wiley; Volume: 34; Issue: 1 Linguagem: Inglês

10.1111/j.1460-9568.2011.07725.x

ISSN

1460-9568

Autores

Justyna R. Sarna, Richard Hawkes,

Tópico(s)

Neuroscience and Neuropharmacology Research

Resumo

European Journal of NeuroscienceVolume 34, Issue 1 p. 79-86 Patterned Purkinje cell loss in the ataxic sticky mouse Justyna R. Sarna, Justyna R. Sarna Department of Clinical Neurosciences, Movement Disorders Program, Health Sciences Centre, 3330 Hospital Drive N.W., Calgary, AB T2N 4N1, CanadaSearch for more papers by this authorRichard Hawkes, Richard Hawkes Department of Cell Biology & Anatomy, Hotchkiss Brain Institute, and Genes and Development Research Group, Faculty of Medicine, University of Calgary, Calgary, AB, CanadaSearch for more papers by this author Justyna R. Sarna, Justyna R. Sarna Department of Clinical Neurosciences, Movement Disorders Program, Health Sciences Centre, 3330 Hospital Drive N.W., Calgary, AB T2N 4N1, CanadaSearch for more papers by this authorRichard Hawkes, Richard Hawkes Department of Cell Biology & Anatomy, Hotchkiss Brain Institute, and Genes and Development Research Group, Faculty of Medicine, University of Calgary, Calgary, AB, CanadaSearch for more papers by this author First published: 06 June 2011 https://doi.org/10.1111/j.1460-9568.2011.07725.xCitations: 19 Dr J. R. Sarna, as above. E-mail: [email protected] Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract The ataxic sticky (sti/sti) mouse is a spontaneous autosomal recessive mutant resulting from a disruption in the editing domain of the alanyl-tRNA synthetase (Aars) gene. The sticky phenotype is characterized by a small body size, a characteristic unkempt coat and neurological manifestations including marked tremor and ataxia starting at 6 weeks of age. The present study was undertaken to examine the spatiotemporal features of Purkinje cell degeneration in the sticky mouse. Purkinje cell loss was found to be both progressive and patterned, with vermal lobules VI, IX and X, crus 1 of the hemisphere, and the flocculus and paraflocculus being differentially resistant to degeneration. The pattern of Purkinje cell degeneration in sticky is not random – in general, the sphingosine kinase 1a-immunonegative Purkinje cell subset is preferentially susceptible to early cell death. In addition, zebrin II/aldolase C expression in the sticky cerebellum is profoundly downregulated, whereas the heat-shock protein 25 is both ectopically expressed in some scattered Purkinje cells and downregulated in other Purkinje cells in which it is normally expressed constitutively. Compared with many mouse mutants with patterned Purkinje cell death, in which successive stripes of cell loss are very clear, Purkinje cell loss in sticky shows a less clear-cut pattern between different Purkinje cell subtypes, with the result that preferential survival is less dramatic. This may represent a secondary consequence of the downregulation of zebrin II expression. References Ahn, A.H., Dziennis, S., Hawkes, R. & Herrup, K. (1994) The cloning of zebrin II reveals its identity with aldolase C. Development, 120, 2081–2090. CASPubMedWeb of Science®Google Scholar Apps, R. & Hawkes, R. (2009) Cerebellar cortical organization: a one-map hypothesis. Nat. Rev. Neurosci., 10, 670–681. 10.1038/nrn2698 CASPubMedWeb of Science®Google Scholar Armstrong, C.L. & Hawkes, R. (2000) Pattern formation in the cerebellar cortex. Biochem. Cell Biol., 78, 551–562. 10.1139/o00-071 CASPubMedWeb of Science®Google Scholar Armstrong, C.L., Krueger-Naug, A.M., Currie, R.W. & Hawkes, R. (2000) Constitutive expression of the 25-kDa heat shock protein Hsp25 reveals novel parasagittal bands of purkinje cells in the adult mouse cerebellar cortex. J. Comp. Neurol., 416, 383–397. 10.1002/(SICI)1096-9861(20000117)416:3 3.0.CO;2-M CASPubMedWeb of Science®Google Scholar Brochu, G., Maler, L. & Hawkes, R. (1990) Zebrin II: a polypeptide antigen expressed selectively by Purkinje cells reveals compartments in rat and fish cerebellum. J. Comp. Neurol., 291, 538–552. 10.1002/cne.902910405 CASPubMedWeb of Science®Google Scholar Chen, S. & Hillman, D.E. (1993) Compartmentation of the cerebellar cortex by protein kinase C delta. Neuroscience, 56, 177–188. 10.1016/0306-4522(93)90572-W CASPubMedWeb of Science®Google Scholar Dehnes, Y., Chaudhry, F.A., Ullensvang, K., Lehre, K.P., Storm-Mathisen, J. & Danbolt, N.C. (1998) The glutamate transporter EAAT4 in rat cerebellar Purkinje cells: a glutamate-gated chloride channel concentrated near the synapse in parts of the dendritic facing astroglia. J. Neurosci., 18, 3606–3619. 10.1523/JNEUROSCI.18-10-03606.1998 CASPubMedWeb of Science®Google Scholar Duchala, C.S., Shick, H.E., Garcia, J., Deweese, D.M., Sun, X., Stewart, V.J. & Macklin, W.B. (2004) The toppler mouse: a novel mutant exhibiting loss of Purkinje cells. J. Comp. Neurol., 476, 113–129. 10.1002/cne.20206 PubMedWeb of Science®Google Scholar Duffin, C.A., McFarland, R., Sarna, J.R., Vogel, M.W. & Armstrong, C.L. (2010) Heat shock protein 25 expression and preferential Purkinje cell survival in the lurcher mutant mouse cerebellum. J. Comp. Neurol., 518, 1892–1907. 10.1002/cne.22309 CASPubMedWeb of Science®Google Scholar Dusart, I. & Sotelo, C. (1994) Lack of Purkinje cell loss in adult rat cerebellum following protracted axotomy: degenerative changes and regenerative attempts of the severed axons. J. Comp. Neurol., 347, 211–232. 10.1002/cne.903470206 CASPubMedWeb of Science®Google Scholar Dusart, I., Guenet, J.L. & Sotelo, C. (2006) Purkinje cell death: differences between developmental cell death and neurodegenerative death in mutant mice. Cerebellum, 5, 163–173. 10.1080/14734220600699373 PubMedWeb of Science®Google Scholar Eisenman, L.M. & Hawkes, R. (1993) Antigenic compartmentation in the mouse cerebellar cortex: zebrin and HNK-1 reveal a complex, overlapping molecular topography. J. Comp. Neurol., 335, 586–605. 10.1002/cne.903350410 CASPubMedWeb of Science®Google Scholar Eisenman, L.M., Gallagher, E. & Hawkes, R. (1998) Regionalization defects in the weaver mouse cerebellum. J. Comp. Neurol., 394, 431–444. 10.1002/(SICI)1096-9861(19980518)394:4 3.0.CO;2-2 CASPubMedWeb of Science®Google Scholar Fletcher, C.F., Lutz, C.M., O'Sullivan, T.N., Shaughnessy, J.D., Hawkes, R., Frankel, W.N., Copeland, N.G. & Jenkins, N.A. (1996) Absence epilepsy in tottering mutant mice is associated with calcium channel defects. Cell, 87, 607–617. 10.1016/S0092-8674(00)81381-1 CASPubMedWeb of Science®Google Scholar Gravel, C., Eisenman, L.E., Sasseville, R. & Hawkes, R. (1987) Parasagittal organization of the rat cerebellar cortex: a direct correlation between antigenic Purkinje cell bands revealed by mabQ113 and the organization of the olivocerebellar projection. J. Comp. Neurol., 263, 294–310. 10.1002/cne.902650211 Web of Science®Google Scholar Hawkes, R. (1997) An anatomical model of cerebellar modules. Prog. Brain Res., 114, 39–52. 10.1016/S0079-6123(08)63357-9 CASPubMedWeb of Science®Google Scholar Hawkes, R. & Gravel, C. (1991) The modular cerebellum. Prog. Neurobiol., 36, 309–327. 10.1016/0301-0082(91)90004-K CASPubMedWeb of Science®Google Scholar Heckroth, J.A. & Abbott, L.C. (1994) Purkinje cell loss from alternating sagittal zones in the cerebellum of leaner mutant mice. Brain Res., 658, 93–104. 10.1016/S0006-8993(09)90014-2 CASPubMedWeb of Science®Google Scholar Herrup, K. & Kuemerle, B. (1997) The compartmentalization of the cerebellum. Annu. Rev. Neurosci., 20, 61–90. 10.1146/annurev.neuro.20.1.61 CASPubMedWeb of Science®Google Scholar Isaacs, A.M., Oliver, P.L., Jones, E.L., Jeans, A., Potter, A., Hovik, B.H., Nolan, P.M., Vizor, L., Glenister, P., Simon, A.K., Gray, I.C., Spurr, N.K., Brown, S.D., Hunter, A.J. & Davies, K.E. (2003) A mutation in Af4 is predicted to cause cerebellar ataxia and cataracts in the robotic mouse. J. Neurosci., 23, 1631–1637. 10.1523/JNEUROSCI.23-05-01631.2003 CASPubMedWeb of Science®Google Scholar Iwata, M., Hirano, A. & French, J.H. (1979) Degeneration of the cerebellar system in X-chromosome-linked copper malabsorption. Ann. Neurol., 5, 542–549. 10.1002/ana.410050609 CASPubMedWeb of Science®Google Scholar Kume, A., Takahashi, A., Hashizume, Y. & Asai, J. (1991) A histometrical and comparative study on Purkinje cell loss and olivary nucleus cell loss in multiple system atrophy. J. Neurol. Sci., 101, 178–186. 10.1016/0022-510X(91)90043-7 CASPubMedWeb of Science®Google Scholar Lee, J.W., Beebe, K., Nangle, L.A., Jang, J., Longo-Guess, C.M., Cook, S.A., Davisson, M.T., Sundberg, J.P., Schimmel, P. & Ackerman, S.L. (2006) Editing-defective tRNA synthetase causes protein misfolding and neurodegeneration. Nature, 443, 50–55. 10.1038/nature05096 CASPubMedWeb of Science®Google Scholar Manto, M. & Marmolino, D. (2009) Animal models of human cerebellar ataxias: a cornerstone for the therapies of the twenty-first century. Cerebellum, 8, 137–154. 10.1007/s12311-009-0127-3 PubMedWeb of Science®Google Scholar Mateos, J.M., Benitez, R., Elezgarai, I., Azkue, J.J., Lazaro, E., Osario, A., Bilbao, A., Donate, F., Sarria, R., Conquet, F., Ferraguti, F., Kuhn, R., Knopfel, T. & Grandes, P. (2000) Immunolocalization of the mGluR1b splice variant of the metabotropic glutamate receptor mGluR1b in the cerebellar cortex. Eur. J. Anat., 5, 15–21. Google Scholar Oberdick, J., Baader, S.L. & Schilling, K. (1998) From zebra stripes to postal zones: deciphering patterns of gene expression in the cerebellum. Trends Neurosci., 21, 383–390. 10.1016/S0166-2236(98)01325-3 CASPubMedWeb of Science®Google Scholar Ozol, K., Hayden, J.M., Oberdick, J. & Hawkes, R. (1999) Transverse zones in the vermis of the mouse cerebellum. J. Comp. Neurol., 412, 95–111. 10.1002/(SICI)1096-9861(19990913)412:1 3.0.CO;2-Y CASPubMedWeb of Science®Google Scholar Paukert, M., Huang, Y.H., Tanaka, K., Rothstein, J.D. & Bergles, D.E. (2010) Zones of enhanced glutamate release from climbing fibers in the mammalian cerebellum. J. Neurosci., 30, 7290–7299. 10.1523/JNEUROSCI.5118-09.2010 CASPubMedWeb of Science®Google Scholar Rossi, F., Borsello, T. & Strata, P. (1994) Exposure to kainic acid mimics the effects of axotomy in cerebellar Purkinje cells of the adult rat. Eur. J. Neurosci., 6, 392–402. 10.1111/j.1460-9568.1994.tb00282.x CASPubMedWeb of Science®Google Scholar Rossi, F., Jankowski, A. & Sotelo, C. (1995) Target neuron controls the integrity of afferent axon phenotype: a study on the Purkinje cell-climbing fiber system in cerebellar mutant mice. J. Neurosci., 15, 2040–2056. CASPubMedWeb of Science®Google Scholar Rossi, D., Cozzio, A., Flechsig, E., Klein, M.A., Rülicke, T., Aguzzi, A. & Weissmann, C. (2001) Onset of ataxia and Purkinje cell loss in PrP null mice inversely correlated with Dpl level in brain. EMBO J., 20, 694–702. 10.1093/emboj/20.4.694 CASPubMedWeb of Science®Google Scholar Sarna, J.R. & Hawkes, R. (2003) Patterned Purkinje cell death in the cerebellum. Prog. Neurobiol., 70, 473–507. 10.1016/S0301-0082(03)00114-X CASPubMedWeb of Science®Google Scholar Sarna, J., Miranda, S.R., Schuchman, E.H. & Hawkes, R. (2001) Patterned cerebellar Purkinje cell death in a transgenic mouse model of Niemann Pick type A/B disease. Eur. J. Neurosci., 13, 1873–1880. 10.1046/j.0953-816x.2001.01564.x CASPubMedWeb of Science®Google Scholar Sarna, J.R., Larouche, M., Marzban, H., Sillitoe, R.V., Rancourt, D.E. & Hawkes, R. (2003) Patterned Purkinje cell degeneration in mouse models of Niemann-Pick type C disease. J. Comp. Neurol., 456, 279–291. 10.1002/cne.10522 PubMedWeb of Science®Google Scholar Sarna, J.R., Marzban, H., Watanabe, M. & Hawkes, R. (2006) Complementary stripes of phospholipiase Cbeta3 and Cbeta4 expression by Purkinje cell subsets in the mouse cerebellum. J. Comp. Neurol., 496, 303–313. 10.1002/cne.20912 CASPubMedWeb of Science®Google Scholar Sillitoe, R.V. & Hawkes, R. (2002) Whole-mount immunohistochemistry: a high-throughput screen for patterning defects in the mouse cerebellum. J. Histochem. Cytochem., 50, 235–244. 10.1177/002215540205000211 CASPubMedWeb of Science®Google Scholar Sotelo, C. (1990) Axonal abnormalities in cerebellar Purkinje cells of the 'hyperspiny Purkinje cell' mutant mouse. J. Neurocytol., 19, 737–755. 10.1007/BF01188042 CASPubMedWeb of Science®Google Scholar Sugihara, I., Wu, H.S. & Shinoda, Y. (2001) The entire trajectories of single olivocerebellar axons in the cerebellar cortex and their contribution to cerebellar compartmentalization. J. Neurosci., 21, 7715–7723. 10.1523/JNEUROSCI.21-19-07715.2001 CASPubMedWeb of Science®Google Scholar Terada, N., Banno, Y., Ohno, N., Fujii, Y., Murate, T., Sarna, J.R., Hawkes, R., Zea, Z., Baba, T. & Ohno, S. (2004) Compartmentation of the mouse cerebellar cortex by sphingosine kinase. J. Comp. Neurol., 469, 119–127. 10.1002/cne.11002 CASPubMedWeb of Science®Google Scholar Tolbert, D.L., Ewald, M., Gutting, J. & La Regina, M.C. (1995) Spatial and temporal pattern of Purkinje cell degeneration in shaker mutant rats with hereditary cerebellar ataxia. J. Comp. Neurol., 355, 490–507. 10.1002/cne.903550403 CASPubMedWeb of Science®Google Scholar Voogd, J. & Ruigrok, T.J. (2004) The organization of the corticonuclear and olivocerebellar climbing fiber projections to the rat cerebellar vermis: the congruence of projection zones and the zebrin pattern. J. Neurocytol., 33, 5–21. 10.1023/B:NEUR.0000029645.72074.2b PubMedWeb of Science®Google Scholar Wadiche, J.I. & Jahr, C.E. (2005) Patterned expression of Purkinje cell glutamate transporters controls synaptic plasticity. Nat. Neurosci., 8, 1329–1334. 10.1038/nn1539 CASPubMedWeb of Science®Google Scholar Wassef, M., Sotelo, C., Cholley, B., Brehier, A. & Thomasset, M. (1987) Cerebellar mutations affecting the postnatal survival of Purkinje cells in the mouse disclose a longitudinal pattern of differentially sensitive cells. Dev. Biol., 124, 379–389. 10.1016/0012-1606(87)90490-8 CASPubMedWeb of Science®Google Scholar Welsh, J.P., Yuen, G., Placantonakis, D.G., Vu, T.Q., Haiss, F., O'Hearn, E., Molliver, M.E. & Aicher, S.A. (2002) Why do Purkinje cells die so easily after global brain ischemia? Aldolase C, EAAT4, and the cerebellar contribution to posthypoxic myoclonus. Adv. Neurol., 89, 331–359. PubMedGoogle Scholar Wenning, G.K., Tison, F., Elliott, L., Quinn, N.P. & Daniel, S.E. (1996) Olivopontocerebellar pathology in multiple system atrophy. Mov. Disord., 11, 157–162. 10.1002/mds.870110207 CASPubMedWeb of Science®Google Scholar Williams, B.L., Yaddanapudi, K., Hornig, M. & Lipkin, W.I. (2007) Spatiotemporal analysis of purkinje cell degeneration relative to parasagittal expression domains in a model of neonatal viral infection. J. Virol., 81, 2675–2687. 10.1128/JVI.02245-06 CASPubMedWeb of Science®Google Scholar Yoneshige, A., Suzuki, K., Suzuki, K. & Matsuda, J. (2010) A mutation in the saposin C domain of the sphingolipid activator protein (Prosaposin) gene causes neurodegenerative disease in mice. J. Neurosci. Res., 88, 2118–2134. 10.1002/jnr.22371 CASPubMedWeb of Science®Google Scholar Citing Literature Volume34, Issue1July 2011Pages 79-86 ReferencesRelatedInformation

Referência(s)