Evidence for a hydroxyapatite precursor in regenerating cyprinid scales
2012; Wiley; Volume: 28; Issue: 3 Linguagem: Inglês
10.1111/j.1439-0426.2012.01989.x
ISSN1439-0426
AutoresErik de Vrieze, L.M. Heijnen, Juriaan R. Metz, Gert Flik,
Tópico(s)Bone health and osteoporosis research
ResumoJournal of Applied IchthyologyVolume 28, Issue 3 p. 388-392 Evidence for a hydroxyapatite precursor in regenerating cyprinid scales E. de Vrieze, E. de Vrieze Department of Organismal Animal Physiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University Nijmegen, Nijmegen, The NetherlandsSearch for more papers by this authorL. Heijnen, L. Heijnen Department of Organismal Animal Physiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University Nijmegen, Nijmegen, The NetherlandsSearch for more papers by this authorJ. R. Metz, J. R. Metz Department of Organismal Animal Physiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University Nijmegen, Nijmegen, The NetherlandsSearch for more papers by this authorG. Flik, G. Flik Department of Organismal Animal Physiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University Nijmegen, Nijmegen, The NetherlandsSearch for more papers by this author E. de Vrieze, E. de Vrieze Department of Organismal Animal Physiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University Nijmegen, Nijmegen, The NetherlandsSearch for more papers by this authorL. Heijnen, L. Heijnen Department of Organismal Animal Physiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University Nijmegen, Nijmegen, The NetherlandsSearch for more papers by this authorJ. R. Metz, J. R. Metz Department of Organismal Animal Physiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University Nijmegen, Nijmegen, The NetherlandsSearch for more papers by this authorG. Flik, G. Flik Department of Organismal Animal Physiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University Nijmegen, Nijmegen, The NetherlandsSearch for more papers by this author First published: 21 May 2012 https://doi.org/10.1111/j.1439-0426.2012.01989.xCitations: 9 Author's address: Erik de Vrieze, Department of Organismal Animal Physiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ, Nijmegen, the Netherlands. E-mail: [email protected] Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Summary Collagen matrices, mineralized with calcium phosphates in a hydroxyapatite phase, are generally found in skeletal tissues. However, mechanisms of biomineral formation and regulation are still poorly understood. Elasmoid scales are part of the dermal skeleton and regenerate quickly when damaged or lost. This makes the scale a convenient target to study mineral compostion and formation. The X-ray diffractogram of the mineral layer of carp scales only show speaks corresponding with hydroxyapatite. Energy-dispersive X-ray spectroscopy (EDX) during scanning electron microscopy identifies the elements calcium and phosphorus, which are restricted to the external layer of the scale. In contrast with various other species, calcium phosphate crystals are not present in the elasmodine layer. The clean boundary between calcified and uncalcified matrix suggests that subsequental mineralization of the elasmodine layer is inhibited. Quantification of the calcium and phosphorus content allows definition of a calcium/phosphorus ratio, which is indicative ofthe crystalline phase of the minerals. Through accurate measurements of total calcium and phosphorus (by ICP-MS) in zebrafish scales, different ratios were found for newly formed (regenerating) scales compared to ontogenetic or completely regenerated scales. This shows that the mineral is not at first deposited as hydroxyapatite, but in a precursor phase. Although the nature of the phase remains to be established, this first analysis shows that cyprinids scales can easily be used to gain insights in the dynamics of biomineralization. References Anderson, H., 2003: Matrix vesicles and calcification. Curr. Rheumatol. Rep. 5, 222– 226. Ascenzi, A.; Bigi, A.; Ripamonti, A.; Roveri, N., 1983: X-ray diffraction analysis of transversal osteonic lamellae. Calcif. Tissue Int. 35, 279– 283. Bereiter-Hahn, J.; Zylberberg, L., 1993: Regeneration of teleost fish scale. Comp. Biochem. Physiol. 105A, 625– 641. Boskey, A. L., 1997: Amorphous calcium phosphate: the contention of bone. J. Dent. Res. 76, 1433– 1436. Christoffersen, J.; Christoffersen, M. R.; Kibalczyc, W.; Andersen, F. A., 1989: A contribution to the understanding of the formation of calcium phosphates. J. Cryst. Growth 94, 767– 777. Garnero, P.; Ferreras, M.; Karsdal, M. A.; Nicamhlaoibh, R.; Risteli, J.; Borel, O.; Qvist, P.; Delmas, P. D.; Foged, N. T.; Delaissé, J. M., 2003: The type I collagen fragments ICTP and CTX reveal distinct enzymatic pathways of bone collagen degradation. J. Bone Miner. Res. 18, 859– 867. Johnsson, M. S.-A.; Nancollas, G. H., 1992: The role of brushite and octacalcium phosphate in apatite formation. Crit. Rev. Oral Biol. Med. 3, 61– 82. de Jong, W. F., 1926: La Substance Minérale Dans les Os. Recl. Trav. Chim. Pays-Bas 45, 445– 448. Killian, C. E.; Wilt, F. H., 2008: Molecular aspects of biomineralization of the echinoderm endoskeleton. Chem. Rev. 108, 4463– 4474. Kim, H. J.; Delaney, J. D.; Kirsch, T., 2010: The role of pyrophosphate/phosphate homeostasis in terminal differentiation and apoptosis of growth plate chondrocytes. Bone 47, 657– 665. Mahamid, J.; Sharir, A.; Addadi, L.; Weiner, S., 2008: Amorphous calcium phosphate is a major component of the forming fin bones of zebrafish: indications for an amorphous precursor phase. Proc. Natl Acad. Sci. USA 105, 12748– 12753. Ohira, Y.; Shimizu, M.; Ura, K.; Takagi, Y., 2007: Scale regeneration and calcification in goldfish Carassius auratus: quantitative and morphological processes. Fish. Sci. 73, 46– 54. Omelon, S.; Georgiou, J.; Henneman, Z. J.; Wise, L. M.; Sukhu, B.; Hunt, T.; Wynnyckyj, C.; Holmyard, D.; Bielecki, R.; Grynpas, M. D., 2009: Control of vertebrate skeletal mineralization by polyphosphates. PLoS ONE 4, e5634. Sakae, T.; Yamamoto, H.; Hirai, G., 1981: Mode of occurrence of brushite and whitlockite in a sialolith. J. Dent. Res. 60, 842– 844. Schönbörner, A. A.; Boivin, G.; Baud, C. A., 1979: The mineralization processes in Teleost Fish scales. Cell Tissue Res. 202, 203– 212. Sire, J.-Y., 1989: The same cell lineage is involved in scale formation and regeneration in the teleost fish Hemichromis bimaculatus. Tissue Cell 21, 447– 462. Sire, J.-Y.; Akimenko, M., 2004: Scale development in fish: a review, with description of sonic hedgehog (shh) expression in the zebrafish (Danio rerio). Int. J. Dev. Biol. 48, 233– 247. Sire, J.-Y.; Géraudie, J., 1984: Fine structure of regenerating scales and their associated cells in the cichlid Hemichromis bimaculatus (Gill). Cell Tissue Res. 237, 537– 547. Sire, J.-Y.; Huysseune, A., 2003: Formation of dermal skeletal and dental tissues in fish: a comparative and evolutionary approach. Biol. Rev. 78, 219– 249. Sire, J.-Y.; Allizard, F.; Babiar, O.; Bourguignon, J.; Quilhac, A., 1997: Scale development in zebrafish (Danio rerio). J. Anat. 190, 545– 561. Stulajterová, R.; Medvecký, L., 2008: Effect of calcium ions on transformation brushite to hydroxyapatite in aqueous solutions. Colloid Surface A 316, 104– 109. de Vrieze, E.; Metz, J. R.; Von den Hoff, J. W.; Flik, G., 2010: ALP, TRAcP and cathepsin K in elasmoid scales: a role in mineral metabolism? J. Appl. Ichthyol. 26, 210– 213. de Vrieze, E.; Sharif, F.; Metz, J. R.; Flik, G.; Richardson, M. K., 2011: Matrix metalloproteinases in osteoclasts of ontogenetic and regenerating zebrafish scales. Bone 48, 704– 712. Zylberberg, L.; Bereiter-Hahn, J.; Sire, J.-Y., 1988: Cytoskeletal organization and collagen orientation in the fish scales. Cell Tissue Res. 253, 597– 607. Citing Literature Volume28, Issue3Special Issue: Interdisciplinary Approaches in Fish Skeletal Biology Proceedings of the Second Conference Tavira, Algarve, Portugal April 26‐28, 2011June 2012Pages 388-392 ReferencesRelatedInformation
Referência(s)