Host genetic resistance to root-knot nematodes, Meloidogyne spp., in Solanaceae: from genes to the field
2015; Wiley; Volume: 71; Issue: 12 Linguagem: Inglês
10.1002/ps.4091
ISSN1526-4998
AutoresArnaud Barbary, Caroline Djian‐Caporalino, Alain Palloix, Philippe Castagnone‐Sereno,
Tópico(s)Legume Nitrogen Fixing Symbiosis
ResumoPest Management ScienceVolume 71, Issue 12 p. 1591-1598 Mini-review Host genetic resistance to root-knot nematodes, Meloidogyne spp., in Solanaceae: from genes to the field Arnaud Barbary, Arnaud Barbary INRA, Institut Sophia Agrobiotech, Sophia Antipolis, France Université de Nice Sophia Antipolis, Institut Sophia Agrobiotech, Sophia Antipolis, France CNRS, Institut Sophia Agrobiotech, Sophia Antipolis, FranceSearch for more papers by this authorCaroline Djian-Caporalino, Caroline Djian-Caporalino INRA, Institut Sophia Agrobiotech, Sophia Antipolis, France Université de Nice Sophia Antipolis, Institut Sophia Agrobiotech, Sophia Antipolis, France CNRS, Institut Sophia Agrobiotech, Sophia Antipolis, FranceSearch for more papers by this authorAlain Palloix, Alain Palloix INRA, Génétique et Amélioration des Fruits et Légumes, Montfavet Cedex, FranceSearch for more papers by this authorPhilippe Castagnone-Sereno, Corresponding Author Philippe Castagnone-Sereno INRA, Institut Sophia Agrobiotech, Sophia Antipolis, France Université de Nice Sophia Antipolis, Institut Sophia Agrobiotech, Sophia Antipolis, France CNRS, Institut Sophia Agrobiotech, Sophia Antipolis, FranceCorrespondence to: Philippe Castagnone-Sereno, INRA, UMR1355 Institut Sophia Agrobiotech, 06903 Sophia Antipolis, France. E-mail: [email protected]Search for more papers by this author Arnaud Barbary, Arnaud Barbary INRA, Institut Sophia Agrobiotech, Sophia Antipolis, France Université de Nice Sophia Antipolis, Institut Sophia Agrobiotech, Sophia Antipolis, France CNRS, Institut Sophia Agrobiotech, Sophia Antipolis, FranceSearch for more papers by this authorCaroline Djian-Caporalino, Caroline Djian-Caporalino INRA, Institut Sophia Agrobiotech, Sophia Antipolis, France Université de Nice Sophia Antipolis, Institut Sophia Agrobiotech, Sophia Antipolis, France CNRS, Institut Sophia Agrobiotech, Sophia Antipolis, FranceSearch for more papers by this authorAlain Palloix, Alain Palloix INRA, Génétique et Amélioration des Fruits et Légumes, Montfavet Cedex, FranceSearch for more papers by this authorPhilippe Castagnone-Sereno, Corresponding Author Philippe Castagnone-Sereno INRA, Institut Sophia Agrobiotech, Sophia Antipolis, France Université de Nice Sophia Antipolis, Institut Sophia Agrobiotech, Sophia Antipolis, France CNRS, Institut Sophia Agrobiotech, Sophia Antipolis, FranceCorrespondence to: Philippe Castagnone-Sereno, INRA, UMR1355 Institut Sophia Agrobiotech, 06903 Sophia Antipolis, France. E-mail: [email protected]Search for more papers by this author First published: 07 August 2015 https://doi.org/10.1002/ps.4091Citations: 38Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract Root-knot nematodes (RKNs) heavily damage most solanaceous crops worldwide. Fortunately, major resistance genes are available in a number of plant species, and their use provides a safe and economically relevant strategy for RKN control. From a structural point of view, these genes often harbour NBS–LRR motifs (i.e. a nucleotide binding site and a leucine rich repeat region near the carboxy terminus) and are organised in syntenic clusters in solanaceous genomes. Their introgression from wild to cultivated plants remains a challenge for breeders, although facilitated by marker-assisted selection. As shown with other pathosystems, the genetic background into which the resistance genes are introgressed is of prime importance to both the expression of the resistance and its durability, as exemplified by the recent discovery of quantitative trait loci conferring quantitative resistance to RKNs in pepper. The deployment of resistance genes at a large scale may result in the emergence and spread of virulent nematode populations able to overcome them, as already reported in tomato and pepper. Therefore, careful management of the resistance genes available in solanaceous crops is crucial to avoid significant reduction in the duration of RKN genetic control in the field. From that perspective, only rational management combining breeding and cultivation practices will allow the design and implementation of innovative, sustainable crop production systems that protect the resistance genes and maintain their durability. © 2015 Society of Chemical Industry Supporting Information Filename Description ps4091-sup-0001-TableS1.pdfPDF document, 239.8 KB R-genes against RKNs in wild and cultivated Solanaceae Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article. REFERENCES 1Abad P, Favery B, Rosso MN and Castagnone-Sereno P, Root-knot nematode parasitism and host response: molecular basis of a sophisticated interaction. Mol Plant Pathol 4: 217–224 (2003). 2Jones JT, Haegeman A, Danchin EGJ, Gaur HS, Helder J, Jones MGK et al., Top 10 plant-parasitic nematodes in molecular plant pathology. Mol Plant Pathol 14: 946–961 (2013). 3Trudgill DL and Blok VC, Apomictic, polyphagous root-knot nematodes: exceptionally successful and damaging biotrophic root pathogens. Annu Rev Phytopathol 39: 53–77 (2001). 4Williamson VM and Kumar A, Nematode resistance in plants: the battle underground. Trends Genet 22: 396–403 (2006). 5Atkinson HJ, Lilley CJ and Urwin PE, Strategies for transgenic nematode control in developed and developing world crops. Curr Opin Biotechnol 23: 251–256 (2012). 6Bleve-Zacheo T, Melillo MT and Castagnone-Sereno P, The contribution of biotechnology to root-knot nematode control in tomato plants. Pest Technol 1: 1–16 (2007). 7Fuller VL, Lilley CJ and Urwin PE, Nematode resistance. New Phytol 180: 27–44 (2008). 8Van Ooijen G, van den Burg HA, Cornelissen BJC and Takken FLW, Structure and function of resistance proteins in solanaceous plants. Annu Rev Phytopathol 45: 43–72 (2007). 9Roberts PA, Resistance in nematodes: definition, concepts and consequences, in Methods for Evaluating Plant Species for Resistance to Plant Parasitic Nematodes, ed. by JL Starr. Society of Nematologists, Hyattsville, MD, pp. 1–15 (1992). 10Fery RL and Dukes PD, The inheritance of resistance to the southern root-knot nematode in ‘Carolina Hot’ cayenne pepper. J Am Soc Hort Sci 121: 1024–1027 (1996). 11Fery RL, Dukes PD and Thies JA, ‘Carolina Wonder’ and ‘Charleston Belle’: southern root knot nematode-resistant bell peppers. HortScience 33: 900–902 (1998). 12Thies JA and Fery RL, Characterization of resistance conferred by the N gene to Meloidogyne arenaria races 1 and 2, M. hapla, and M. javanica in two sets of isogenic lines of Capsicum annuum. J Am Soc Hort Sci 125: 71–75 (2000). 13Thabuis A, Palloix A, Pflieger S, Daubèze AM, Caranta C and Lefebvre V, Comparative mapping of Phytophthora resistance loci in pepper germplasm: evidence for conserved resistance loci across Solanaceae and for a large genetic diversity. Theor Appl Genet 106: 1473–1485 (2003). 14Caranta C, Lefebvre V and Palloix A, Polygenic resistance of pepper to potyviruses consists of a combination of isolate-specific and broad-spectrum quantitative trait loci. Mol Plant–Microbe Interact 10: 872–878 (1997). 15Tai TH, Dahlbeck D, Clark ET, Gajiwala P, Pasion R, Whalen MC et al., Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato. Proc Natl Acad Sci USA 96: 14 153–14 158 (1999). 16Djian-Caporalino C, Fazari A, Arguel MJ, Vernie T, VandeCasteele C, Faure I et al., Root-knot nematode (Meloidogyne spp.) Me resistance genes in pepper (Capsicum annuum L.) are clustered on the P9 chromosome. Theor Appl Genet 114: 473–486 (2007). 17Veremis JC and Roberts PA, Relationship between Meloidogyne incognita resistance gene in Lycopersicon peruvianum differentiated by heat sensitivity and nematode virulence. Theor Appl Genet 93: 950–959 (1996). 18Yaghoobi J, Kaloshian I, Wen Y and Williamson VM, Mapping a new nematode resistance locus in Lycopersicon peruvianum. Theor Appl Genet 91: 457–464 (1995). 19Chunwongse J, Doganlar S, Crossman C, Jiang J and Tanksley SD, High-resolution genetic map of the Lv resistance locus in tomato. Theor Appl Genet 95: 220–223 (1997). 20Rouppe van der Voort J, Wolters P, Folkertsma R, Hutten R, van Zanvoort P, Vinke H et al., Mapping of the cyst nematode resistance locus Gpa2 in potato using a strategy based on co-migrating AFLP markers. Theor Appl Genet 95: 874–880 (1997). 21Kouassi AB, Kerlan MC, Sobczak M, Dantec JP, Rouaux C, Ellisseche D et al., Genetics and phenotypic characterisation of the hypersensitive resistance of Solanum sparsipilum to Meloidogyne incognita. Nematology 6: 389–400 (2005). 22Ritter E, Debener T, Barone A, Salamini F and Gebhardt C, RFLP mapping on potato chromosomes of two genes controlling extreme resistance to potato virus X (PVX). Mol Gen Genet 227: 81–85 (1991). 23Van der Vossen EAG, Rouppe van der Voort JNAM, Kanyuka K, Bendahmane A, Sandbrink H, Baulcombe DC et al., Homologues of a single resistance-gene cluster in potato confer resistance to distinct pathogens: a virus and a nematode. Plant J 23: 567–576 (2000). 24Robbins TP, Carpenter R and Coen ES, A chromosome rearrangement suggests that donor and recipient sites are associated during Tam3 transposition in Antirrhinum majus. EMBO J 8: 5–13 (1989). 25Kim JM, Vanguri S, Boeke JD, Gabriel A and Voyta DF, Transposable elements and genome organization: a comparative survey of retrotransposons revealed by the complete Saccharomyces cerevisiae genome sequence. Genome Res 8: 464–478 (1998). 26Meyers BC, Chin DB, Shen KA, Sivaramakrishnan S, Lavelle DO, Zhang Z et al., The major resistance gene cluster in lettuce is highly duplicated and spans several megabases. Plant Cell 10: 1817–1832 (1998). 27Song WY, Bureau TE and Ronald PC, Identification and characterization of 14 transposon-like elements in the noncoding regions of members of the Xa21 family of disease resistance genes in rice. Mol Gen Genet 258: 449–456 (1998). 28Grube RC, Radwanski ER and Jahn MK, Comparative genetics of disease resistance within the Solanaceae. Genetics 155: 873–887 (2000). 29Qin C, Yu C, Shen Y, Fang X, Chen L, Min J et al., Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization. Proc Natl Acad Sci USA 111: 5135–5140 (2014). 30Kim S, Park M, Yeom SI, Kim YM, Lee JM, Lee HA et al., Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nat Genet 46: 270–278 (2014). 31de Jong W, Forsyth A, Leister D, Gebhardt C and Baulcombe DC, A potato hypersensitive resistance gene against potato virus X maps to a resistance gene cluster on chromosome 5. Theor Appl Genet 95: 246–252 (1997). 32Hulbert SH, Craig AW, Shavannor MS and Qing S, Resistance gene complexes: evolution and utilization. Annu Rev Phytopathol 39: 285–312 (2001). 33Pflieger S, Lefebvre V, Caranta C, Blattes A, Goffinet B and Palloix A, Disease resistance gene analogs as candidates for QTLs involved in pepper–pathogen interactions. Genome 42: 1100–1110 (1999). 34Mazourek M, Cirulli ET, Collier SM, Landry LG, Kang BC, Quirin EA et al., The fractionated orthology of Bs2 and Rx/Gpa2 supports shared synteny of disease resistance in the Solanaceae. Genetics 182: 1351–1364 (2009). 35Zamir D, Ekstein-Michelson I, Zakay Y, Navot N, Zeidan M, Sarfatti M et al., Mapping and introgression of a tomato yellow leaf curl virus tolerance gene, Ty-1. Theor Appl Genet 88: 141–146 (1994). 36Thoquet P, Olivier J, Sperisen C, Rogowsky P, Prior P, Anais G et al., Polygenic resistance of tomato plants to bacterial wilt in the French West Indies. Mol Plant–Microbe Interact 9: 837–842 (1996). 37Gebhardt C and Valkonen JF, Organization of genes controlling disease resistance in the potato genome. Annu Rev Phytopathol 39: 79–102 (2001). 38Van der Vossen EAG, Gros J, Sikkema A, Muskens M, Wouters D, Wolters P et al., The Rpi-blb gene from Solanum bulbocastanum is an Mi-1 gene homolog conferring broad-spectrum late blight resistance in potato. Plant J 44: 208–222 (2005). 39Bai YL, van der Hulst R, Bonnema G, Marcel BC, Meijer-Dekens F, Niks RE et al., Tomato defense to Oidium neolycopersici dominant Ol genes confers isolate-dependent resistance via a different mechanism than recessive ol-2. Mol Plant–Microbe Interact 18: 354–362 (2005). 40Michelmore RW and Meyers BC, Clusters of resistance genes in plants evolve by divergent selection and a birth-and-death process. Genome Res 8: 1113–1130 (1998). 41Jacquet M, Bongiovanni M, Martinez M, Verschave P, Wajnberg E and Castagnone-Sereno P, Variation in resistance to the root-knot nematode Meloidogyne incognita in tomato genotypes bearing the Mi gene. Plant Pathol 54: 93–99 (2005). 42Maleita CM, Vieira dos Santos MC, Curtis RHC, Powers SJ and Abrantes IMO, Effect of the Mi gene on reproduction of Meloidogyne hispanica on tomato genotypes. Nematology 13: 939–949 (2011). 43Cortada L, Sorribas JF, Ornat C, Andres MF and Verdejo-Lucas S, Response of tomato rootstocks carrying the Mi-resistance gene to populations of Meloidogyne arenaria, M. incognita and M. javanica. Eur J Plant Pathol 124: 337–343 (2009). 44Thies JA and Fery RL, Heat stability of resistance to southern root-knot nematode in bell pepper genotypes homozygous and heterozygous for the N gene. J Am Soc Hort Sci 127: 371–375 (2002). 45Barbary A, Palloix A, Fazari A, Marteu N, Castagnone-Sereno P and Djian-Caporalino C, The plant genetic background affects the efficiency of the pepper major nematode resistance genes Me1 and Me3. Theor Appl Genet 127: 499–507 (2014). 46Palloix A, Ayme V and Moury B, Durability of plant major resistance genes to pathogens depends on the genetic background, experimental evidence and consequences for breeding strategies. New Phytol 183: 190–199 (2009). 47Brun H, Chevre AM, Fitt BD, Powers S, Besnard AL, Ermel M et al., Quantitative resistance increases the durability of qualitative resistance to Leptosphaeria maculans in Brassica napus. New Phytol 185: 285–299 (2010). 48Tan MYA, Hutten RCB, Visser RGF and van Eck HJ, The effect of pyramiding Phytophthora infestans resistance genes RPi-mcd1 and RPi-ber in potato. Theor Appl Genet 121: 117–125 (2010). 49Fournet S, Kerlan MC, Renault L, Dantec JP, Rouaux C and Montarry J, Selection of nematodes by resistant plants has implications for local adaptation and cross-virulence. Plant Pathol 62: 184–193 (2012). 50Paillard S, Trotoux-Verplancke G, Perretant M-R, Mohamadi F, Leconte M, Coedel S et al., Durable resistance to stripe rust is due to three specific resistance genes in French bread wheat cultivar Apache. Theor Appl Genet 125: 955–965 (2012). 51Quenouille J, Paulhiac E, Moury B and Palloix A, Quantitative trait loci from the host genetic background modulates the durability of a resistance gene: a rational basis for sustainable resistance breeding in plants. Heredity 112: 579–587 (2014). 52Cervantes-Flores JC, Yencho GC, Pecota KV, Sosinski B and Mwanga ROM, Detection of quantitative trait loci and inheritance of root-knot nematode resistance in sweet potato. J Am Soc Hort Sci 133: 844–851 (2008). 53Ulloa M, Wang C and Roberts PA, Gene action analysis by inheritance and quantitative trait loci mapping of resistance to root-knot nematodes in cotton. Plant Breeding 129: 541–550 (2010). 54Xu X, Zeng L, Tao Y, Vuong T, Wan J, Boerma R et al., Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing. Proc Natl Acad Sci USA 110: 13 469–13 474 (2013). 55Burow MD, Starr JL, Park CH, Simpson CE and Paterson AH, Introgression of homeologous quantitative trait loci (QTLs) for resistance to the root-knot nematode [Meloidogyne arenaria (Neal) Chitwood] in an advanced backcross-QTL population of peanut (Arachis hypogaea L). Mol Breeding 34: 393–406 (2014). 56Sanchez-Solana F, Ros C, Guerrero MM, Lacasa CM, Sanchez-Lopez E and Lacasa A, New pepper accessions proved to be suitable as a genetic resource for use in breeding nematode-resistant rootstocks. Plant Genet Resour DOI: 10.1017/S1479262115000027 (2015). 57Quenouille J, Montarry J, Palloix A and Moury B, Farther, slower, stronger: how the plant genetic background protects a major resistance gene from breakdown. Mol Plant Pathol 14: 109–118 (2013). 58Veremis JC and Roberts PA, Differentiation of Meloidogyne incognita and M. arenaria novel resistance phenotypes in Lycopersicon peruvianum and derived bridge-lines. Theor Appl Genet 1993: 960–967 (1996). 59Williamson VM and Roberts PA, Mechanisms and genetics of resistance, in Root-knot Nematodes, ed. by RN Perry, M Moens and J Starr. CABI Publishing, Wallingford, Oxon, UK, pp. 301–325 (2009). 60Thies JA and Fery RL, Modified expression of the N gene for southern root-knot nematode resistance in pepper at high soil temperatures. J Am Soc Hort Sci 123: 1012–1015 (1998). 61Thies JA and Fery RL, Heat stability of resistance to Meloidogyne incognita in Scotch Bonnet peppers (Capsicum chinense Jacq.). J Nematol 32: 356–361 (2000). 62Thies JA and Fery RL, Characterization of Capsicum chinense cultigens for resistance to Meloidogyne arenaria, M. hapla, and M. javanica. Plant Dis 85: 267–270 (2001). 63Thies JA, Dickson DW and Fery RL, Stability of resistance to root-knot nematodes in ‘Charleston Belle’ and ‘Carolina Wonder’ bell peppers in a sub-tropical environment. HortScience 43: 188–190 (2008). 64Rommens CM and Kishore GM, Exploiting the full potential of disease-resistance genes for agricultural use. Curr Opin Biotechnol 11: 120–125 (2000). 65Zhang LH, Mojtahedi H, Kuang H, Baker B and Brown CR, Marker-assisted selection of Columbia root-knot nematode resistance introgressed from Solanum bulbocastanum. Crop Sci 47: 2021–2026 (2007). 66Potato Genome Sequencing Consortium, Genome sequence and analysis of the tuber crop potato. Nature 475: 189–195 (2011). 67 Tomato Genome Consortium, The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485: 635–641 (2012). 68Jacobsen E and Schouten HJ, Cisgenesis strongly improves introgression breeding and induced translocation breeding of plants. Trends Biotechnol 25: 219–223 (2007). 69Goggin FL, Shah G, Williamson VM and Ullman DE, Instability of Mi-mediated nematode resistance in transgenic tomato plants. Mol Breeding 13: 357–364 (2004). 70Goggin FL, Jia L, Shah G, Hebert S, Williamson VM and Ullman DE, Heterologous expression of the Mi-12 gene from tomato confers resistance against nematodes but not aphids in eggplant. Mol Plant–Microbe Interact 19: 383–388 (2006). 71Williamson VM, Root-knot nematode resistance genes in tomato and their potential for future use. Annu Rev Phytopathol 36: 277–293 (1998). 72Zhang LY, Zhang YY, Chen RG, Zhang JH, Wang TT, Li HX et al., Ectopic expression of the tomato Mi-1 gene confers resistance to root knot nematodes in lettuce (Lactuca sativa). Plant Mol Biol Repter 28: 204–211 (2010). 73Kouassi AB, Kerlan MC, Caromel B, Dantec JP, Fouville D, Manzanares-Dauleux M et al., A major gene mapped on chromosome XII is the main factor of a quantitatively inherited resistance to Meloidogyne fallax in Solanum sparsipilum. Theor Appl Genet 112: 699–707 (2006). 74Brown CR, Mojtahedi H and Santo GS, Introgression of resistance to Columbia and Northern root-knot nematodes from Solanum bulbocastanum into cultivated potato. Euphytica 83: 71–78 (1995). 75Smith PG, Embryo culture of a tomato species hybrid. Proc Am Soc Hort Sci 44: 413–416 (1944). 76Thies JA, Mueller JD and Fery RL, Effectiveness of resistance to southern root-knot nematode in ‘Carolina Cayenne’ pepper (Capsicum annuum L.) in greenhouse, microplot, and field tests. J Am Soc Hort Sci 122: 200–204 (1997). 77Djian-Caporalino C, Pijarowski L, Januel A, Lefebvre V, Daubèze A, Palloix A et al., Spectrum of resistance to root-knot nematodes and inheritance of heat-stable resistance in pepper (Capsicum annuum L). Theor Appl Genet 99: 496–502 (1999). 78Hendy H, Pochard E and Dalmasso A, Transmission héréditaire de la résistance aux Meloidogyne portée par deux lignées de Capsicum annuum: études de descendances d'homozygotes issues d'androgénèse. Agronomie 5: 93–100 (1985). 79Castagnone-Sereno P, Meloidogyne enterolobii (= M. mayaguensis): profile of an emerging, highly pathogenic root-knot nematode species. Nematology 14: 133–138 (2012). 80Gonçalves LSA, Gomes VM, Robaina RR, Valim RH, Rodrigues R and Aranha FM, Resistance to root-knot nematode (Meloidogyne enterolobii) in Capsicum spp. accessions. Rev Bras Ciencias Agrar 9: 49–52 (2014). 81Holzmann OV, Effects of soil temperature on resistance of tomato to root-knot nematode (Meloidogyne incognita). Phytopathology 55: 990–992 (1965). 82Verdejo-Lucas S, Talavera M and Andres MF, Virulence response to the Mi1 gene of Meloidogyne populations from tomato in greenhouses. Crop Prot 39: 97–105 (2012). 83Iberkleid I, Ozalvo R, Feldman L, Elbaz M, Patricia B and Horowitz SB, Responses of tomato genotypes to avirulent and Mi-virulent Meloidogyne javanica isolates occurring in Israel. Phytopathology 104: 484–496 (2014). 84Tzortzakakis EA, Conceicao I, Dias AM, Simoglou KB and Abrantes I, Occurrence of a new resistant breaking pathotype of Meloidogyne incognita on tomato in Greece. J Plant Dis Prot 121: 184–186 (2014). 85Thies JA, Virulence of Meloidogyne incognita to expression of N gene in pepper. J Nematol 43: 90–94 (2011). 86Djian-Caporalino C, Molinari S, Palloix A, Ciancio A, Fazari A, Marteu N et al., The reproductive potential of the root-knot nematode Meloidogyne incognita is affected by selection for virulence against major resistance genes from tomato and pepper. Eur J Plant Pathol 131: 431–440 (2011). 87Ros-Ibanez C, Robertson L, del Carmen Martinez-Lluch M, Cano-Garcia A and Lacasa-Plasencia A, Development of virulence to Meloidogyne incognita on resistant pepper rootstocks. Spanish J Agr Res 12: 225–232 (2014). 88Bird DM, Williamson VM, Abad P, McCarter J, Danchin EGJ, Castagnone-Sereno P et al., The genomes of root-knot nematodes. Annu Rev Phytopathol 47: 333–351 (2009). 89McDonald BA and Linde C, Pathogen population genetics and the durability of resistance. Euphytica 124: 163–180 (2002). 90Castagnone-Sereno P, Danchin EGJ, Perfus-Barbeoch L and Abad P, Diversity and evolution of root-knot nematodes, genus Meloidogyne: new insights from the genomic era. Annu Rev Phytopathol 51: 203–220 (2013). 91Perfus-Barbeoch L, Castagnone-Sereno P, Reichelt M, Fneich S, Roquis D, Pratx L et al., Elucidating the molecular bases of epigenetic inheritance in non-model invertebrates: the case of the root-knot nematode Meloidogyne incognita. Front Physiol 5: 211 (2014). 92Sage-Palloix AM, Jourdan F, Phaly T, Nemouchi G, Lefebvre V and Palloix A, Structuring genetic diversity in pepper genetic resources: distribution of horticultural and resistance traits in the INRA pepper germplasm, in Progress in Research on Capsicum and Eggplant, ed. by K Niemirowicz-Szczytt. University of Life Sciences Press, Warsaw, Poland, pp. 33–42 (2007). 93Djian-Caporalino C, Palloix A, Fazari A, Marteu N, Barbary A, Abad P et al., Pyramiding, alternating or mixing: comparative performances of deployment strategies of nematode resistance genes to promote plant resistance efficiency and durability. BMC Plant Biol 14: 53 (2014). 94Bleve-Zacheo T, Bongiovanni M, Melillo MT and Castagnone-Sereno P, The pepper resistance genes Me1 and Me3 induce differential penetration rates and temporal sequences of root cell ultrastructural changes upon nematode infection. Plant Sci 133: 79–90 (1998). 95Pegard A, Brizzard G, Fazari A, Soucaze O, Abad P and Djian-Caporalino C, Histological characterization of resistance to different root-knot nematode species related to phenolics accumulation in Capsicum annuum. Phytopathology 95: 158–165 (2005). 96Bourget R, Chaumont L, Durel CE and Sapoukhina N, Sustainable deployment of QTLs conferring quantitative resistance to crops: first lessons from a stochastic model. New Phytol 206: 1163–1171 (2015). 97Schwarz D, Rouphael Y, Colla G and Venema JH, Grafting as a tool to improve tolerance of vegetables to abiotic stresses: thermal stress, water stress and organic pollutants. Sci Hort 127: 162–171 (2010). 98Dallemole-Giaretta R, de Freitas LG, Lopes EA, Ferraz S, de Podestá GS and Agnes EL, Cover crops and Pochonia chlamydosporia for the control of Meloidogyne javanica. Nematology 13: 919–926 (2011). 99Klein E, Katan J and Gamliel A, Soil suppressiveness to Meloidogyne javanica as induced by organic amendments and solarization in greenhouse crops. Crop Prot 39: 26–32 (2012). 100Stirling GR, Integration of organic amendments, crop rotation, residue retention and minimum tillage into a subtropical vegetable farming system enhances suppressiveness to root-knot nematode (Meloidogyne incognita). Aust Plant Pathol 42: 625–637 (2013). 101Ortiz AM, Sipes BS, Miyasaka SC and Arakaki AS, Green manure crops for management of Meloidogyne javanica and Pythium aphanidermatum. Hortscience 50: 90–98 (2015). 102Collange B, Navarrete M, Montfort F, Mateille T, Tavoillot J, Martiny B et al., Alternative cropping systems can have contrasting effects on various soil-borne diseases: relevance of a systemic analysis in vegetable cropping systems. Crop Prot 55: 7–15 (2014). 103Fazari A, Palloix A, Wang LH, Hua MY, Sage-Palloix AM, Zhang BX et al., The root-knot nematode resistance N-gene co-localizes in the Me-genes cluster on the pepper (Capsicum annuum L.) P9 chromosome. Plant Breeding 131: 665–673 (2012). Citing Literature Volume71, Issue12December 2015Pages 1591-1598 ReferencesRelatedInformation
Referência(s)