Effects of DTNBP1 genotype on brain development in children
2011; Wiley; Volume: 52; Issue: 12 Linguagem: Inglês
10.1111/j.1469-7610.2011.02427.x
ISSN1469-7610
AutoresStefania Tognin, Essi Viding, Eamon McCrory, Lauren Taylor, Michael O’Donovan, Philip McGuire, Andrea Mechelli,
Tópico(s)Neuroscience and Neuropharmacology Research
ResumoJournal of Child Psychology and PsychiatryVolume 52, Issue 12 p. 1287-1294 Effects of DTNBP1 genotype on brain development in children Stefania Tognin, Stefania Tognin Department of Psychosis Studies, Institute of Psychiatry, King's College London, LondonSearch for more papers by this authorEssi Viding, Essi Viding Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, London Division of Psychology and Language Sciences, University College London, LondonSearch for more papers by this authorEamon J. McCrory, Eamon J. McCrory Division of Psychology and Language Sciences, University College London, LondonSearch for more papers by this authorLauren Taylor, Lauren Taylor Department of Psychosis Studies, Institute of Psychiatry, King's College London, LondonSearch for more papers by this authorMichael C. O'Donovan, Michael C. O'Donovan Department of Clinical Neuroscience, Division of Department of Psychological Medicine, School of Medicine, Cardiff University, Heath Park, Cardiff, UKSearch for more papers by this authorPhilip McGuire, Philip McGuire Department of Psychosis Studies, Institute of Psychiatry, King's College London, LondonSearch for more papers by this authorAndrea Mechelli, Andrea Mechelli Department of Psychosis Studies, Institute of Psychiatry, King's College London, LondonSearch for more papers by this author Stefania Tognin, Stefania Tognin Department of Psychosis Studies, Institute of Psychiatry, King's College London, LondonSearch for more papers by this authorEssi Viding, Essi Viding Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, London Division of Psychology and Language Sciences, University College London, LondonSearch for more papers by this authorEamon J. McCrory, Eamon J. McCrory Division of Psychology and Language Sciences, University College London, LondonSearch for more papers by this authorLauren Taylor, Lauren Taylor Department of Psychosis Studies, Institute of Psychiatry, King's College London, LondonSearch for more papers by this authorMichael C. O'Donovan, Michael C. O'Donovan Department of Clinical Neuroscience, Division of Department of Psychological Medicine, School of Medicine, Cardiff University, Heath Park, Cardiff, UKSearch for more papers by this authorPhilip McGuire, Philip McGuire Department of Psychosis Studies, Institute of Psychiatry, King's College London, LondonSearch for more papers by this authorAndrea Mechelli, Andrea Mechelli Department of Psychosis Studies, Institute of Psychiatry, King's College London, LondonSearch for more papers by this author First published: 03 June 2011 https://doi.org/10.1111/j.1469-7610.2011.02427.xCitations: 15 Conflict of interest statement: No conflicts declared. Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract Background: Schizophrenia is a neurodevelopmental disorder, and risk genes are thought to act through disruption of brain development. Several genetic studies have identified dystrobrevin-binding protein 1 (DTNBP1, also known as dysbindin) as a potential susceptibility gene for schizophrenia, but its impact on brain development is poorly understood. The present investigation examined for the first time the effects of DTNBP1 on brain structure in children. Our hypothesis was that a genetic variation in DTNBP1 (i.e., the single nucleotide polymorphism rs2619538) would be associated with differences in both gray and white matter brain regions previously implicated in schizophrenia. Methods: Magnetic resonance imaging and voxel-based morphometry were used to examine brain structure in 52 male children aged between 10 and 12 years. Statistical inferences on the effects of DTNBP1 genotype on gray and white matter volume (GMV and WMV) were made at p < .05 after family-wise error correction for multiple comparisons across the whole brain. Results: Individuals homozygous for the schizophrenia high-risk allele (AA) compared with those homozygous for the low-risk allele (TT) expressed reduced GMV in the left anterior cingulate gyrus and reduced WMV in the left medial frontal area. Conclusions: Our results suggest that genetic variation in DTNBP1 is associated with differences in gray and white matter; and that these effects are already evident in children as young as 10–12 years. These findings are consistent with the notion that the DTNBP1 genotype influences brain development and may thereby modulate vulnerability to schizophrenia. References Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. Neuroimage, 38, 95–113. Bearden, C.E., van Erp, T.G., Thompson, P.M., Toga, A.W., & Cannon, T.D. (2007). Cortical mapping of genotype–phenotype relationships in schizophrenia. Human Brain Mapping, 28, 519–532. Bray, N.J., Preece, A., Williams, N.M., Moskvina, V., Buckland, P.R., Owen, M.J., & O'Donovan, M.C. (2005). Haplotypes at the dystrobrevin binding protein 1 (DTNBP1) gene locus mediate risk for schizophrenia through reduced DTNBP1 expression. Human Molecular Genetics, 14, 1947–1954. Brune, M., Schobel, A., Karau, R., Benali, A., Faustmann, P.M., Juckel, G., & Petrasch-Parwez, E. (2010). Von Economo neuron density in the anterior cingulate cortex is reduced in early onset schizophrenia. Acta Neuropathologica, 119, 771–778. Chugani, H.T., Phelps, M.E., & Mazziotta, J.C. (1987). Positron emission tomography study of human brain functional development. Annals of Neurology, 22, 487–497. Davis, K.L., Stewart, D.G., Friedman, J.I., Buchsbaum, M., Harvey, P.D., Hof, P.R., Buxbaum, J., & Haroutunian, V. (2003). White matter changes in schizophrenia: Evidence for myelin-related dysfunction. Archives of General Psychiatry, 60, 443–456. DeLisi, L.E. (2001). Speech disorder in schizophrenia: Review of the literature and exploration of its relation to the uniquely human capacity for language. Schizophrenia Bulletin, 27, 481–496. Donohoe, G., Frodl, T., Morris, D., Spoletini, I., Cannon, D.M., Cherubini, A., Caltagirone, C., Bossu, P., McDonald, C., Gill, M., Corvin, A.P., & Spalletta, G. (2010). Reduced occipital and prefrontal brain volumes in dysbindin-associated schizophrenia. Neuropsychopharmacology, 35, 368–373. Donohoe, G., Morris, D.W., De Sanctis, P., Magno, E., Montesi, J.L., Garavan, H.P., Robertson, I.H., Javitt, D.C., Gill, M., Corvin, A.P., & Foxe, J.J. (2008). Early visual processing deficits in dysbindin-associated schizophrenia. Biological Psychiatry, 63, 484–489. Ettinger, U., Picchioni, M., Landau, S., Matsumoto, K., van Haren, N.E., Marshall, N., Hall, M.H., Schulze, K., Toulopoulou, T., Davies, N., Ribchester, T., McGuire, P.K., & Murray, R.M. (2007). Magnetic resonance imaging of the thalamus and adhesio interthalamica in twins with schizophrenia. Archives of General Psychiatry, 64, 401–409. Fornito, A., Yung, A.R., Wood, S.J., Phillips, L.J., Nelson, B., Cotton, S., Velakoulis, D., McGorry, P.D., Pantelis, C., & Yucel, M. (2008). Anatomic abnormalities of the anterior cingulate cortex before psychosis onset: An MRI study of ultra-high-risk individuals. Biological Psychiatry, 64, 758–765. Freeman, B., Smith, N., Curtis, C., Huckett, L., Mill, J., & Craig, I.W. (2003). DNA from buccal swabs recruited by mail: Evaluation of storage effects on long-term stability and suitability for multiplex polymerase chain reaction genotyping. Behavior Genetics, 33, 67–72. Ghiani, C.A., Starcevic, M., Rodriguez-Fernandez, I.A., Nazarian, R., Cheli, V.T., Chan, L.N., Malvar, J.S., de Vellis, J., Sabatti, C., & Dell'Angelica, E.C. (2010). The dysbindin-containing complex (BLOC-1) in brain: Developmental regulation, interaction with SNARE proteins and role in neurite outgrowth. Molecular Psychiatry, 15, 204–215. Giedd, J.N., Snell, J.W., Lange, N., Rajapakse, J.C., Casey, B.J., Kozuch, P.L., Vaituzis, A.C., Vauss, Y.C., Hamburger, S.D., Kaysen, D., & Rapoport, J.L. (1996). Quantitative magnetic resonance imaging of human brain development: Ages 4–18. Cerebral Cortex, 6, 551–560. Goodman, R., Ford, T., Simmons, H., Gatward, R., & Meltzer, H. (2000). Using the Strengths and Difficulties Questionnaire (SDQ) to screen for child psychiatric disorders in a community sample. British Journal of Psychiatry, 177, 534–539. Gornick, M.C., Addington, A.M., Sporn, A., Gogtay, N., Greenstein, D., Lenane, M., Gochman, P., Ordonez, A., Balkissoon, R., Vakkalanka, R., Weinberger, D.R., Rapoport, J.L., & Straub, R.E. (2005). Dysbindin (DTNBP1, 6p22.3) is associated with childhood-onset psychosis and endophenotypes measured by the Premorbid Adjustment Scale (PAS). Journal of Autism and Developmental Disorder, 35, 831–838. Harrison, P.J., & Weinberger, D.R. (2005). Schizophrenia genes, gene expression, and neuropathology: On the matter of their convergence. Molecular Psychiatry, 10, 40–68; image 45. Hubl, D., Koenig, T., Strik, W., Federspiel, A., Kreis, R., Boesch, C., Maier, S.E., Schroth, G., Lovblad, K., & Dierks, T. (2004). Pathways that make voices: White matter changes in auditory hallucinations. Archives of General Psychiatry, 61, 658–668. Huttenlocher, P.R., & Dabholkar, A.S. (1997). Regional differences in synaptogenesis in human cerebral cortex. Journal of Comparative Neurology, 387, 167–178. Karlsgodt, K.H., Sun, D., Jimenez, A.M., Lutkenhoff, E.S., Willhite, R., van Erp, T.G., & Cannon, T.D. (2008). Developmental disruptions in neural connectivity in the pathophysiology of schizophrenia. Development and Psychopathology, 20, 1297–1327. Kishimoto, M., Ujike, H., Motohashi, Y., Tanaka, Y., Okahisa, Y., Kotaka, T., Harano, M., Inada, T., Yamada, M., Komiyama, T., Hori, T., Sekine, Y., Iwata, N., Sora, I., Iyo, M., Ozaki, N., & Kuroda, S. (2008). The dysbindin gene (DTNBP1) is associated with methamphetamine psychosis. Biological Psychiatry, 63, 191–196. Kumra, S., Ashtari, M., Cervellione, K.L., Henderson, I., Kester, H., Roofeh, D., Wu, J., Clarke, T., Thaden, E., Kane, J.M., Rhinewine, J., Lencz, T., Diamond, A., Ardekani, B.A., & Szeszko, P.R. (2005). White matter abnormalities in early-onset schizophrenia: A voxel-based diffusion tensor imaging study. Journal of the American Academy of Child and Adolescent Psychiatry, 44, 934–941. Li, T., Zhang, F., Liu, X., Sun, X., Sham, P.C., Crombie, C., Ma, X., Wang, Q., Meng, H., Deng, W., Yates, P., Hu, X., Walker, N., Murray, R.M., St Clair, D., & Collier, D.A. (2005). Identifying potential risk haplotypes for schizophrenia at the DTNBP1 locus in Han Chinese and Scottish populations. Molecular Psychiatry, 10, 1037–1044. Markov, V., Krug, A., Krach, S., Whitney, C., Eggermann, T., Zerres, K., Stocker, T., Shah, N.J., Nothen, M.M., Treutlein, J., Rietschel, M., & Kircher, T. (2009). Genetic variation in schizophrenia-risk-gene dysbindin 1 modulates brain activation in anterior cingulate cortex and right temporal gyrus during language production in healthy individuals. Neuroimage, 47, 2016–2022. Marquardt, R.K., Levitt, J.G., Blanton, R.E., Caplan, R., Asarnow, R., Siddarth, P., Fadale, D., McCracken, J.T., & Toga, A.W. (2005). Abnormal development of the anterior cingulate in childhood-onset schizophrenia: A preliminary quantitative MRI study. Psychiatry Research, 138, 221–233. Mechelli, A., Price, P., Friston, K.J., & Ashburner, J. (2005). Voxel-based morphometry of the human brain: Methods and applications. Current Medical Imaging Reviews, 1, 105–113. Mechelli, A., Viding, E., Kumar, A., Pettersson-Yeo, W., Fusar-Poli, P., Tognin, S., O'Donovan, M.C., & McGuire, P. (2010). Dysbindin modulates brain function during visual processing in children. Neuroimage, 49, 817–822. Mesulam, M. (2000). Paralimbic (mesocortical) areas. In M.M. Mesulam (Ed.), Principles of behavioral and cognitive neurology (pp. 49–54. New York: Oxford University Press. Narr, K.L., Szeszko, P.R., Lencz, T., Woods, R.P., Hamilton, L.S., Phillips, O., Robinson, D., Burdick, K.E., DeRosse, P., Kucherlapati, R., Thompson, P.M., Toga, A.W., Malhotra, A.K., & Bilder, R.M. (2009). DTNBP1 is associated with imaging phenotypes in schizophrenia. Human Brain Mapping, 30, 3783–3794. Narr, K.L., van Erp, T.G., Cannon, T.D., Woods, R.P., Thompson, P.M., Jang, S., Blanton, R., Poutanen, V.P., Huttunen, M., Lonnqvist, J., Standerksjold-Nordenstam, C.G., Kaprio, J., Mazziotta, J.C., & Toga, A.W. (2002). A twin study of genetic contributions to hippocampal morphology in schizophrenia. Neurobiology of Disease, 11, 83–95. Numakawa, T., Yagasaki, Y., Ishimoto, T., Okada, T., Suzuki, T., Iwata, N., Ozaki, N., Taguchi, T., Tatsumi, M., Kamijima, K., Straub, R.E., Weinberger, D.R., Kunugi, H., & Hashimoto, R. (2004). Evidence of novel neuronal functions of dysbindin, a susceptibility gene for schizophrenia. Human Molecular Genetics, 13, 2699–2708. van den Oord, E.J., Sullivan, P.F., Jiang, Y., Walsh, D., O' Neill, F.A., Kendler, K.S., & Riley, B.P. (2003). Identification of a high-risk haplotype for the dystrobrevin binding protein 1 (DTNBP1) gene in the Irish study of high-density schizophrenia families. Molecular Psychiatry, 8, 499–510. Owen, M. (2010). Imaging genetics in psichiatry: Disease path or garden path? Schizophrenia Research, 117, 123. Owen, M.J., Craddock, N., & O'Donovan, M.C. (2005). Schizophrenia: Genes at last? Trends in Genetics, 21, 518–525. Rapoport, J.L., Addington, A.M., Frangou, S., & Psych, M.R. (2005). The neurodevelopmental model of schizophrenia: Update 2005. Molecular Psychiatry, 10, 434–449. Raybould, R., Green, E.K., MacGregor, S., Gordon-Smith, K., Heron, J., Hyde, S., Caesar, S., Nikolov, I., Williams, N., Jones, L., O'Donovan, M.C., Owen, M.J., Jones, I., Kirov, G., & Craddock, N. (2005). Bipolar disorder and polymorphisms in the dysbindin gene (DTNBP1). Biological Psychiatry, 57, 696–701. Ross, C.A., Margolis, R.L., Reading, S.A., Pletnikov, M., & Coyle, J.T. (2006). Neurobiology of schizophrenia. Neuron, 52, 139–153. Schwab, S.G., Knapp, M., Mondabon, S., Hallmayer, J., Borrmann-Hassenbach, M., Albus, M., Lerer, B., Rietschel, M., Trixler, M., Maier, W., & Wildenauer, D.B. (2003). Support for association of schizophrenia with genetic variation in the 6p22.3 gene, dysbindin, in sib-pair families with linkage and in an additional sample of triad families. American Journal of Human Genetics, 72, 185–190. Seidman, L.J., Pantelis, C., Keshavan, M.S., Faraone, S.V., Goldstein, J.M., Horton, N.J., Makris, N., Falkai, P., Caviness, V.S., & Tsuang, M.T. (2003). A review and new report of medial temporal lobe dysfunction as a vulnerability indicator for schizophrenia: A magnetic resonance imaging morphometric family study of the parahippocampal gyrus. Schizophrenia Bulletin, 29, 803–830. Smieskova, R., Fusar-Poli, P., Allen, P., Bendfeldt, K., Stieglitz, R.D., Drewe, J., Radue, E.W., McGuire, P.K., Riecher-Rossler, A., & Borgwardt, S.J. (2010). Neuroimaging predictors of transition to psychosis – A systematic review and meta-analysis. Neuroscience and Biobehavioral Reviews, 34, 1207–1222. Sowell, E.R., Peterson, B.S., Thompson, P.M., Welcome, S.E., Henkenius, A.L., & Toga, A.W. (2003). Mapping cortical change across the human life span. Nature Neuroscience, 6, 309–315. Szeszko, P.R., Bilder, R.M., Lencz, T., Ashtari, M., Goldman, R.S., Reiter, G., Wu, H., & Lieberman, J.A. (2000). Reduced anterior cingulate gyrus volume correlates with executive dysfunction in men with first-episode schizophrenia. Schizophrenia Research, 43, 97–108. Tkachev, D., Mimmack, M.L., Ryan, M.M., Wayland, M., Freeman, T., Jones, P.B., Starkey, M., Webster, M.J., Yolken, R.H., & Bahn, S. (2003). Oligodendrocyte dysfunction in schizophrenia and bipolar disorder. Lancet, 362, 798–805. Tochigi, M., Zhang, X., Ohashi, J., Hibino, H., Otowa, T., Rogers, M., Kato, T., Okazaki, Y., Kato, N., Tokunaga, K., & Sasaki, T. (2006). Association study of the dysbindin (DTNBP1) gene in schizophrenia from the Japanese population. Neuroscience Research, 56, 154–158. Tosato, S., Ruggeri, M., Bonetto, C., Bertani, M., Marrella, G., Lasalvia, A., Cristofalo, D., Aprili, G., Tansella, M., Dazzan, P., Diforti, M., Murray, R.M., & Collier, D.A. (2007). Association study of dysbindin gene with clinical and outcome measures in a representative cohort of Italian schizophrenic patients. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 144B, 647–659. Van Den Bogaert, A., Schumacher, J., Schulze, T.G., Otte, A.C., Ohlraun, S., Kovalenko, S., Becker, T., Freudenberg, J., Jonsson, E.G., Mattila-Evenden, M., Sedvall, G.C., Czerski, P.M., Kapelski, P., Hauser, J., Maier, W., Rietschel, M., Propping, P., Nothen, M.M., & Cichon, S. (2003). The DTNBP1 (dysbindin) gene contributes to schizophrenia, depending on family history of the disease. American Journal of Human Genetics, 73, 1438–1443. Walterfang, M., Wood, S.J., Velakoulis, D., & Pantelis, C. (2006). Neuropathological, neurogenetic and neuroimaging evidence for white matter pathology in schizophrenia. Neuroscience and Biobehavioral Reviews, 30, 918–948. D. Wechsler(Ed.). (1999). Abbreviated Scale of Intelligence. New York: The Psychological Corporation. Weinberger, D.R. (1987). Implications of normal brain development for the pathogenesis of schizophrenia. Archives of General Psychiatry, 44, 660–669. White, T., Cullen, K., Rohrer, L.M., Karatekin, C., Luciana, M., Schmidt, M., Hongwanishkul, D., Kumra, S., Charles Schulz, S., & Lim, K.O. (2008). Limbic structures and networks in children and adolescents with schizophrenia. Schizophrenia Bulletin, 34, 18–29. Williams, N.M., Preece, A., Morris, D.W., Spurlock, G., Bray, N.J., Stephens, M., Norton, N., Williams, H., Clement, M., Dwyer, S., Curran, C., Wilkinson, J., Moskvina, V., Waddington, J.L., Gill, M., Corvin, A.P., Zammit, S., Kirov, G., Owen, M.J., & O'Donovan, M.C. (2004). Identification in 2 independent samples of a novel schizophrenia risk haplotype of the dystrobrevin binding protein gene (DTNBP1). Archives of General Psychiatry, 61, 336–344. Williams, N.M., Williams, H., Norton, N., Spurlock, G., Kirov, G., Morris, D.W., Waddington, J.L., Gill, M., Corvin, A., Owen, M.J., & O'Donovan, M.C. (2003). Replication of schizophrenia susceptibility loci. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 122B, 16–17. Yassa, M.A., & Stark, C.E. (2009). A quantitative evaluation of cross-participant registration techniques for MRI studies of the medial temporal lobe. Neuroimage, 44, 319–327. Citing Literature Volume52, Issue12December 2011Pages 1287-1294 ReferencesRelatedInformation
Referência(s)