Proteolytic imbalance in Alzheimer fibroblasts as potential pathological trait of disease
1998; Wiley; Volume: 12; Issue: 11 Linguagem: Inglês
10.1096/fasebj.12.11.925
ISSN1530-6860
AutoresFrancesco Paoletti, Donatella Tombaccini,
Tópico(s)Computational Drug Discovery Methods
ResumoThe FASEB JournalVolume 12, Issue 11 p. 925-927 CommentaryFree to Read Proteolytic imbalance in Alzheimer fibroblasts as potential pathological trait of disease Francesco Paoletti, Corresponding Author Francesco Paoletti [email protected] Istituto di Patologia Generale, Università di, Firenze, Viale G. B. Morgagni 50, Firenze, 50134 ItalyE-mail: [email protected]Search for more papers by this authorDonatella Tombaccini, Donatella Tombaccini Istituto di Patologia Generale, Università di, Firenze, Viale G. B. Morgagni 50, Firenze, 50134 ItalySearch for more papers by this author Francesco Paoletti, Corresponding Author Francesco Paoletti [email protected] Istituto di Patologia Generale, Università di, Firenze, Viale G. B. Morgagni 50, Firenze, 50134 ItalyE-mail: [email protected]Search for more papers by this authorDonatella Tombaccini, Donatella Tombaccini Istituto di Patologia Generale, Università di, Firenze, Viale G. B. Morgagni 50, Firenze, 50134 ItalySearch for more papers by this author First published: 01 August 1998 https://doi.org/10.1096/fasebj.12.11.925Citations: 7Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat No abstract is available for this article. REFERENCES 1Gasparini, L., Racchi, M., Binetti, G., Trabucchi, M., Solerte, S. B., Alkon, D., Etcheberrigaray, R., Gibson, G., Blass, J., Paoletti, R., and Govoni, S. (1998) Peripheral markers in testing phatophysiological hypotheses abd diagnosing Alzheimer's disease. FASEBJ.. 12, 17–28 10.1096/fsb2fasebj.12.1.17 CASPubMedWeb of Science®Google Scholar 2Cataldo, A. M., and Nixon, R. A. (1990) Enzymatically active lysosomal proteases are associated with amyloid deposits in Alzheimer brain. Proc. Natl. Acad. Sci. USA 87, 3861–3865 10.1073/pnas.87.10.3861 CASADSPubMedWeb of Science®Google Scholar 3Haass, U., and Sparks, D. L. (1994) Cathepsin D-activity and immunocytochemical localization in Alzheimer's disease and aging. Neurobiol. Aging 15, S57 Google Scholar 4Ii, K., Ito, K., Kominami, E., and Hirano, A. (1993) Abnormal distribution of cathepsin proteinases and endogenous inhibitors (cystatins) in the hippocampus of patients with Alzheimer's disease, parkinsonism-dementia complex on Guam, and senile dementia in the aged. Virchows Arch. Pathol. Anat. 423, 185–194 10.1007/BF01614769 CASPubMedWeb of Science®Google Scholar 5Bernstein, H. G., Rinne, R., Kirschke, H., Järvinen, M., Knöfel, B., and Rinne, A. (1994) Cystatin A-like immunoreactivity is widely distributed in human brain and accumulates in neuritic plaques of Alzheimer disease subjects. Brain Res. Bull. 33, 477–481 10.1016/0361-9230(94)90071-X CASPubMedWeb of Science®Google Scholar 6Abraham, C., and Potter, H. (1989) The protease inhibitor, al-pha1-antichymotrypsin, is a component of the brain amyloid deposits in normal aging and Alzheimer's disease. Ann. Med. 21, 77–81 10.3109/07853898909149188 CASPubMedWeb of Science®Google Scholar 7Gollin, P. A., Kalaria, R. N., Eikelenboom, P., Rozemuller, A., and Perry, G. (1992) α1-antitrypsin and α1-antichymotrypsin are in the lesions of Alzheimer disease. Neuroreport 3, 201–203 10.1097/00001756-199202000-00020 CASPubMedWeb of Science®Google Scholar 8Sisodia, S. S., Koo, E. H., Beyreuther, K., Unterbeck, A., and Price, D. L. (1990) Evidence that amyloid protein in Alzheimer's disease is not derived by normal processing. Science 248, 492–495 10.1126/science.1691865 CASADSPubMedWeb of Science®Google Scholar 9Haass, C., Koo, E. H., Mellon, A., Hung, A. Y., and Selkoe, D. J. (1992) A second processing pathway for the β-amyloid precursor protein: cell surface molecules traffic to lysosomes and generate amyloid-bearing fragments. Nature (London) 357, 500–503 10.1038/357500a0 CASADSPubMedWeb of Science®Google Scholar 10Haass, C., Schlossmacher, M. G., Hung, A. Y., Vigo-Perlfrey, C., Mellon, A., Ostaszeeski, B. L., Lieberburg, I., Koo, E. H., Schenk, D., Teplow, D. B., and Selkoe, D. J. (1992) Amyloid β-peptide is produced by cultured cells during normal metabolism. Nature (London) 359, 322–325 10.1038/359322a0 CASADSPubMedWeb of Science®Google Scholar 11Tanzi, R. E., McClatchey, A. I., Lamperti, E. D., Villa-Komaroff, L., Gusella, J. F., and Neve, R. L. (1988) Protease inhibitor domain encoded by an amyloid protein precursor mRNA associated with Alzheimer's disease. Nature (London) 331, 528–530 10.1038/331528a0 CASADSPubMedWeb of Science®Google Scholar 12Oltersdorf, T., Fritz, L., Schenk, D. B., Lieberberg, I., Johnson-Wood, K. L., Beattie, E. C., Ward, P. J., Blacher, R. W., Dovey, H. F., and Sinha, S. (1989) The secretedform ofthe Alzheimer's amyloid precursor protein with the Kunitz domain is protease nexin-II. Nature (London) 341, 144–147 10.1038/341144a0 CASADSPubMedWeb of Science®Google Scholar 13Van Nostrand, W. E., Wagner, S. L., Suzuki, M., Choi, B. H., Farrow, J. S., Geddes, J. W., Cotman, C.W., and Cunningham, D.D. (1989) Protease nexin-II, a potent antichymotrypsin, shows identity to amyloid β-protein precursor. Nature (London) 341, 546–549 10.1038/341546a0 CASADSPubMedWeb of Science®Google Scholar 14Tagawa, K., Kunishita, T., Maruyama, K., Yoshikawa, K., Komi-nami, E., Tsuchiya, T., Suzuki, K., Tabira, T., Sugita, H., and Ishiura, S. (1991) Alzheimer's disease amyloid β-clippingenzyme (APP secretase): Identification, purification, and characterization of the enzyme. Biochem. Biophys. Res. Commun. 177, 377–387 10.1016/0006-291X(91)91994-N CASPubMedWeb of Science®Google Scholar 15 C. D. B. Banner, and R. A. N. Nixon eds (1992) Proteases and protease inhibitors in Alzheimer's Pathogenesis In Annals of New York Academy of Sciences, Vol. 674 Google Scholar 16Iqbal, K., Grundke-Iqbal, I., Zaidi, T., Merz, P. A., Wen, G.Y., Shaikh, S. S., Wisneiwski, H. M., Alafuzoff, I., and Winblad, B. (1986). Defective brain microtubule assembly in Alzheimer's disease. Lancet 23, 421–426 10.1016/S0140-6736(86)92134-3 Google Scholar 17Zhang, H., Sternberger, N. H., Rubinstein, L. J., Herman, M. M., Binder, L. I., and Sternberger, L. A. (1989) Abnormal processing of multiple proteins in Alzheimer's disease. Proc. Natl. Acad. Sci. USA 86, 8045–8049 10.1073/pnas.86.20.8045 CASADSPubMedWeb of Science®Google Scholar 18Saitoh, T., Masliah, E., Baum, L., Sundsmo, M., Flanagan, L., Vikramkumar, R., and Kay, M. B. M. (1992) Degradation of proteins in the membrane-cytoskeleton complex in Alzheimer's disease. Might amyloidogenic APP processing be just a tip of the iceberg? In Annals of The New York Academy of Sciences ( C.D. B. Banner, and R.A. Nixon eds) Vol. 674, pp. 180–192, The New York Academy of Sciences, New York Google Scholar 19Selkoe, D. J. (1989) Biochemistry of altered brain proteins in Alzheimer's disease. Annu. Rev. Neurosci. 12, 463–490 10.1146/annurev.ne.12.030189.002335 CASPubMedWeb of Science®Google Scholar 20Scott, R. B. (1993) Extraneuronal manifestations of Alzheimer's disease. J. Am. Geriatrics Soc. 41, 205–356 Google Scholar 21Peterson, C., Gibson, G. E., and Blass, J. P. (1985) Altered calcium uptake in cultured skin fibroblasts from patients with Alzheimer's disease. N. Engl. J. Med. 312, 1063–1064 10.1056/NEJM198504183121618 CASPubMedWeb of Science®Google Scholar 22Peterson, C., Ratan, R. R., Shelanski, M., and Goldman, G. E. (1986) Cytosolic free calcium and cell spreading decrease in fibrolasts from aged and Alzheimer donors. Proc. Natl. Acad. Sci. USA 83, 7999–8001 10.1073/pnas.83.20.7999 CASADSPubMedWeb of Science®Google Scholar 23Etcheberrigaray, R., Ito, E., Oka, K., Tofrl-Grehl, B., Gibson, G. E. and Alkon, D.L. (1993) Potassium channel dysfunction in fibroblasts identifies patients with Alzheimer disease. Proc. Natl. Acad. Sci. USA 90, 8209–8213 10.1073/pnas.90.17.8209 CASADSPubMedWeb of Science®Google Scholar 24Sims, N. R., Finegan, J. M., and Blass, J. P. (1987) Altered metabolic properties of cultured skin fibroblasts in Alzheimer's disease. Ann. Neurol. 21, 451–456 10.1002/ana.410210507 CASPubMedWeb of Science®Google Scholar 25Ueda, K., Cole, G., Sundsmo, M., Katzman, R., Saitoh, T. (1989) Decreased adhesiveness of Alzheimer's disease fibroblasts: is amyloid β-protein precursor involved? Ann. Neurol. 25, 246–251 10.1002/ana.410250307 CASWeb of Science®Google Scholar 26Huang, H. M., Toral-Barza, L., Thaler, H., Tofel-Grehl, B., and Gibson, G. E. (1991) Inositol phosphates and intracellular calcium after bradykinin stimulation in fibroblasts from young, normal aged and Alzheimer donors. Neurobiol. Aging 12, 469–473 10.1016/0197-4580(91)90075-U CASPubMedWeb of Science®Google Scholar 27Gibson, G. E., Maretins, R., Blass, J., and Gandy, S. (1996) Altered oxidation and signal transduction systems in fibroblasts from Alzheimer's patients. Life Sci. 59, 477–490 10.1016/0024-3205(96)00327-X CASPubMedWeb of Science®Google Scholar 28Van Huyn, T., Cole, G., Katzman, R., Huang, K.-P., and Saitoh, T. (1989) Reduced protein kinase C immunoreactivity and altered protein phosphorylation in Alzheimer's disease fibroblasts. Arch. Neurol. 46, 1195–1199 Google Scholar 29Govoni, S., Bergamaschi, S., Racchi, M., Battaini, F., Binetti, G., Bianchetti, A., and Trabucchi, M. (1993) Cytosol protein kinase C downregulation in fibroblasts from Alzheimer's disease patients. Neurology 43, 2581–2586 10.1212/WNL.43.12.2581 CASPubMedWeb of Science®Google Scholar 30De Strooper, B., Saftig, P., Craessaerts, K., Vaderstichele, H., Guhde, G., Annaert, W., Von Figura, K., and Van Leuven, F. (1998) Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature (London) 391, 387–390 10.1038/34910 CASADSPubMedWeb of Science®Google Scholar 31Haass, C., and Selkoe, D.J. (1998) A technical KO of amyloid β-peptide. Nature (London) 391, 339–340 10.1038/34800 CASADSPubMedWeb of Science®Google Scholar 32Ghiso, J., Jensson, O., and Francione, B. (1986) Amyloid fibrils in hereditary cerebral hemorrage with amyloidosis of Iceland type is a variant of γ-trace basic protein (cystatin C). Proc. Natl. Acad. Sci. USA 83, 2974–2978 10.1073/pnas.83.9.2974 CASADSPubMedWeb of Science®Google Scholar 33Paoletti, F., Mocali, A., Marchi, M., Sorbi, S., and Piacentini, S. (1990) Occurrence of transketolase abnormalities in extracts of foreskin fibroblasts from patients with Alzheimer's disease. Biochem. Biophys. Res. Commun. 172, 396–401 10.1016/0006-291X(90)90686-H CASPubMedWeb of Science®Google Scholar 34Paoletti, F., Mocali, A. (1991) Enhanced proteolytic activities in cultured fibroblasts of Alzheimer patients are revealed by peculiar transketolase alterations. J. Neurol. Sci. 105, 211–216 10.1016/0022-510X(91)90147-Y CASPubMedWeb of Science®Google Scholar 35Paoletti, F., Mocali, A., and Tombaccini, D. (1997) Cysteine proteinases are responsible for characteristic transketolase alterations in Alzheimer fibroblasts. J. Cell. Physiol. 172, 63–68 10.1002/(SICI)1097-4652(199707)172:1 3.0.CO;2-B PubMedWeb of Science®Google Scholar 36Shoji, M., Golde, T. E., Ghiso, J., Cheung, T. T., Estus, S., Shaffer, L. M., Cai, X.-D., McKay, D. M., Tintner, R., Frangione, B., and Younkin, S. G. (1992) Production of the Alzheimer amyloid p protein by normal proteolytic processing. Science 258, 126–129 10.1126/science.1439760 CASADSPubMedWeb of Science®Google Scholar 37Haass, C., Hung, A. Y., Schlossmacher, M. G., Teplow, D. B., and Selkoe, D. J. (1993) β-Amyloid peptide and a 3-kDa fragment are derived by distinct cellular mechanisms. J. Biol. Chem. 268, 3021–3024 CASPubMedWeb of Science®Google Scholar 38Klafki, H.-W., Paganetti, P. A., Sommer, B., Staufenbiel, M. (1995) Calpain inhibitor I decreases βA4 secretion from human embryonal kidney cells expressing β-amyloid precursor protein carrying the APP670/671 double mutation. Neurosci. Lett. 201, 29–32 10.1016/0304-3940(95)12122-K CASPubMedWeb of Science®Google Scholar 39Bernstein, H. G., Kirschke, H., Wiederanders, B., Pollak, K.H., Zipress, A., and Rinne, A. (1996). The possibile place of cathepsins and cystatins in the puzzle of Alzheimer disease. Mol. Chem. Neuropharmacol. 27, 225–247 Google Scholar 40Munger, J. S., Haass, C., Lemere, C. A., Shi, G.-P., Wong, W. S. F., Teplow D. B., Selkoe, D. J., and Chapman, H. A. (1995) Lysosomal processing of amyloid precursor protein to Aβ peptides: a distinct role for cathepsin S. Biochem. J. 311, 299–305 10.1042/bj3110299 CASPubMedWeb of Science®Google Scholar Citing Literature Volume12, Issue11August 1998Pages 925-927 ReferencesRelatedInformation
Referência(s)