Artigo Revisado por pares

Approximate methods for computing flow fields

1954; Wiley; Volume: 7; Issue: 1 Linguagem: Inglês

10.1002/cpa.3160070106

ISSN

1097-0312

Autores

J. H. Giese,

Tópico(s)

Differential Equations and Numerical Methods

Resumo

Communications on Pure and Applied MathematicsVolume 7, Issue 1 p. 65-77 Article Approximate methods for computing flow fields J. H. Giese, J. H. Giese Ballistic Research Laboratories, AberdeenSearch for more papers by this author J. H. Giese, J. H. Giese Ballistic Research Laboratories, AberdeenSearch for more papers by this author First published: February 1954 https://doi.org/10.1002/cpa.3160070106Citations: 3AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Bibliography 1 Carter, W. C., Supersonic flow with vorticity about a slightly yawing body of revolution, Ballistics Research Laboratory, Report No. 796, 1852. 2 Carter, W. C., and Spencer, G. L., On the numerical solution of hyperbolic systems of partial differential equations with two characteristic directions, Ballistics Research Laboratory, Report No. 813, 1952. 3 Clippinger, R. F., and Gerber, N., Supersonic flow over bodies of revolution (with special reference to high speed computing), Ballistics Research Laboratory, Report No. 719, 1950. 4 Clippinger, R. F., and Giese, J. H., Characteristic conditions for three-dimensional flows with vorticity, Ballistics Research Laboratory, Memorandum No. 615, 1952. 5 Courant, R., Rees, M., and Isaacson, E., On the solution of non-linear hyperbolic differential equations by finite differences, Communications on Pure and Applied Mathematics, Volume 5, 1952, pp. 243–255. 6 Frankl, F. I., and Aleksieva, R., Zwei Randwertaufgaben aus der Theorie der hyperbolischen partiellen Differentialgleichungen zweiter Ordnung mit Anwendungen auf Gasströmungen mit Überschallgeschwindigkeit, Receuil mathématique Moscou, Volume 41, 1934, pp. 483–502; English translation by R. F. Clippinger, Ballistics Research Laboratory, File X-123. 7 Coburn, N., and Dolph, C. L., The method of characteristics for three-dimensional supersonic flows, Proceedings of the Symposium on Applied Mathematics, American Mathematical Society, 1949, pp. 55–66. 8 Ferrari, C., Interference between wing and body at supersonic speeds, Journal of the Aeronautical Sciences, Volume 16, 1949, pp. 411–434. 9 Holt, M., The numerical method of characteristics for supersonic flows with axial symmetry, Quarterly Journal of Mechanics and Applied Mathematics, Volume 2, 1949, pp. 473–478. 10 Lewy, H., Über das Anfangswertproblem einer hyperbolischen nichtlinearen partiellen Differentialgleichung zweiter Ordnung mit zwei unabhängigen Veränderlichen, Mathematische Annalen, Volume 98, 1926, pp. 179–191. 11 Lighthill, M. J., Supersonic flow past slender bodies of revolution, the slope of whose meridian section is discontinuous, Quarterly Journal of Mechanics and Applied Mathematics, Volume 1, 1948, pp. 90–103. 12 Moeckel, W. E., Use of characteristic surfaces for unsymmetrical flow problems, National Advisory Committee for Aeronautics, Technical Note No. 1819, 1949. 13 Sauer, R., Supersonic flow about projectile heads of arbitrary shape at small incidence, Luftfahrtforschung, Volume 19, 1942, pp. 148–152; R.T.P. Translation No. 1573, British Ministry of Aircraft Production. 14 Sauer, R., Dreidimensionale Probleme der Charakteristikentheorie partiellen Differentialgleichungen, Zeitschrift für angewandte Mathematik und Meechanik, Volume 30, 1950, pp. 347–356. 15 Stone, A. H., On supersonic flow past a slightly yawing WM, Journal of Mathematics and Physics, Volume 27, 1948, pp. 67–81. 16 Teofilato, P., Determinazione della corrente supersoica tridimeasionale col metodo della carrateristiche, Acta Pontificia Academia Scientarum, Volume 14, 1951, pp, 33–44. 17 Thornhill, C. K., The numerical method of charactertics for hyperbolic problems in three independent variables, Aeronautical Research Council Reports and Memoranda, No. 2615 (11,767), 1952. 18 Van Dyke, M., First- and second-order theory of supersonic flow past bodies of revolution, Journal of the Aeronautical Sciences, Volume 18, 1951, pp. 161–178. Citing Literature Volume7, Issue1February 1954Pages 65-77 ReferencesRelatedInformation

Referência(s)