Random Number Generators
1962; Society for Industrial and Applied Mathematics; Volume: 4; Issue: 3 Linguagem: Inglês
10.1137/1004061
ISSN1095-7200
Autores Tópico(s)Cryptography and Residue Arithmetic
ResumoPrevious article Next article Random Number GeneratorsT. E. Hull and A. R. DobellT. E. Hull and A. R. Dobellhttps://doi.org/10.1137/1004061PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAbout[1] V. D. Barnett, The behavior of pseudo-random sequences generated on computers by the multiplicative congruential method, Math. Comp., 16 (1962), 63–69 MR0136046 (24:B2085) 0108.13701 N. P. Buslenko and , Ju. A. Sreider, The Monte-Carlo method and how it is carried out on digital computers, Gosudarsty. Izdat. Fiz-Mat. Lit., Moscow, 1961, (Russian) CrossrefGoogle Scholar[2] J. Bass and , J. Guilloud, Méthode de Monte-Carlo et suites uniformément denses, Chiffres, 1 (1958), 149–155 MR0100338 (20:6771) 0089.11502 G. Miller Clark, Corrections to [86], Math. Comp., 16 (1962), 261– CrossrefGoogle Scholar[3] N. W. Bazley and , P. J. Davis, Accuracy of Monte Carlo methods in computing finite Markov chains, J. Res. Nat. Bur. Standards Sect. B, 64B (1960), 211–215 MR0129107 (23:B2144) 0102.12105 Joel N. Franklin, Deterministic simulation of random processes, Technical Report, 118, Computing Center, California Institute of Technology, 1962 CrossrefGoogle Scholar[4] W. F. Bauer, The Monte Carlo method, J. Soc. Indust. Appl. Math., 6 (1958), 438–451 10.1137/0106028 MR0098455 (20:4913) 0084.34601 Masatugu Isida and , Hiroji Ikeda, Random number generator, Ann. Inst. Statist. Math., Tokyo, 8 (1956), 119–126 MR0086369 (19,174c) 0075.28903 LinkISIGoogle Scholar[5] Eve, Bofinger and , V. J. Bofinger, On a periodic property of pseudo-random sequences, J. Assoc. Comput. Mach., 5 (1958), 261–265 MR0131949 (24:A1796) 0091.14503 R. K. Pathria, A statistical study of randomness among the first $10,000$ digits of $\pi$, Math. Comp., 16 (1962), 188–197 MR0144443 (26:1988) 0106.13402 CrossrefISIGoogle Scholar[6] Eve Bofinger and , V. J. Bofinger, The gap test for random sequences, Ann. Math. Statist., 32 (1961), 524–534 MR0126909 (23:A4203) 0109.37302 CrossrefISIGoogle Scholar[7] Eve Bofinger and , V. J. Bofinger, A note on the paper by W. E. Thomson on "ERNIE—a mathematical and statistical analysis", J. Roy. Stat. Soc., A124 (1961), 240–243 CrossrefGoogle Scholar[8] G. E. P. Box and , Muller E. Mervin, A Note on the generation of random normal deviates, Annals Math. Stat., 29 (1958), 610–611 0085.13720 CrossrefISIGoogle Scholar[9] George W. Brown, History of RAND's random digits—summary, Monte Carlo Method, Appl. Math. Series 12, Nat. Bur. Stand., 1951, 31–32 Google Scholar[10] J. C. Butcher, A partition test for pseudo-random numbers, Math. Comp., 15 (1961), 198–199 MR0130089 (23:B3121) 0111.14702 CrossrefGoogle Scholar[11] J. C. Butcher, Random sampling from the normal distribution, Comput. J., 3 (1960/1961), 251–253 10.1093/comjnl/3.4.251 MR0127512 (23:B558) 0094.13503 CrossrefISIGoogle Scholar[12] James W. Butler, Herbert A. Meyer, Machine sampling from given probability distributions, Symposium on Monte Carlo methods, University of Florida, 1954, John Wiley and Sons, Inc., New York, 1956, 249–264 MR0079823 (18,152b) Google Scholar[13] J. M. Cameron, Monte Carlo experiments on SEAC, Working Paper SEL-52-5, Nat. Bur. Stand., 1951, (Oct. 27) Google Scholar[14] J. M. Cameron, Results of some tests of randomness on pseudo-random numbers (preliminary report), Annals Math. Stat., 23 (1952), 138–, Abstract ISIGoogle Scholar[15] E. D. Cashwell and , C. J. Everett, A practical manual on the Monte Carlo method for random walk problems., International Tracts in Computer Science and Technology and their Application, Vol. 1, Pergamon Press, New York, 1959ix+153 MR0106538 (21:5269) Google Scholar[16] J. Certaine, On sequences of pseudo-random numbers of maximal length, J. Assoc. Comput. Mach., 5 (1958), 353–356 MR0127511 (23:B557) 0091.14504 CrossrefISIGoogle Scholar[17] Charles E. Clark, The utility of statistics of random numbers, Operations Res., 8 (1960), 185–195 MR0115262 (22:6064) 0090.11102 CrossrefISIGoogle Scholar[18] Charles E. Clark and , Betty Weber Holz, Exponentially distributed random numbers, Published for Operations Research Office, The Johns Hopkins University by The Johns Hopkins Press, Baltimore, Md., 1960vii+249 MR0115263 (22:6065) 0101.11703 Google Scholar[19] R. R. Coveyou, Serial correlation in the generation of pseudo-random numbers, J. Assoc. Comput. Mach., 7 (1960), 72–74 MR0117869 (22:8643) 0096.33903 CrossrefISIGoogle Scholar[20] J. H. Curtiss, "Monte Carlo" methods for the iteration of linear operators, J. Math. Physics, 32 (1954), 209–232 MR0059622 (15,560b) 0055.11301 CrossrefISIGoogle Scholar[21] P. Davis and , P. Rabinowitz, Some Monte Carlo experiments in computing multiple integrals, Math. Tables Aids Comput., 10 (1956), 1–8 MR0076451 (17,901c) 0072.14403 CrossrefGoogle Scholar[22] Edward L. Dodd, Certain tests for randomness applied to data grouped into small sets, Econometrica, 10 (1942), 249–257 MR0007239 (4,108a) 0063.01126 CrossrefGoogle Scholar[23] H. J. A. Duparc, , C. G. Lekkerkerker and , W. Peremans, Reduced sequences of integers and pseudo-random numbers, Rapport ZW 1953-002, Math. Centrum Amsterdam., 1953, 15– MR0053417 (14,770h) 0051.27403 Google Scholar[24] A. R. Edmonds, The generation of pseudo-random numbers on electronic digital computers, Comput. J., 2 (1959/1960), 181–185 10.1093/comjnl/2.4.181 MR0112271 (22:3125) 0091.29702 CrossrefISIGoogle Scholar[25] Louis W. Ehrlich, Monte Carlo solutions of boundary value problems involving the difference analogue of $\partial \sp{2}u/\partial x\sp{2} +\partial \sp{2}u/\partial y\sp{2}+Ky\sp{-1}\partial u/\partial y=0$, J. Assoc. Comput. Mach., 6 (1959), 204–218 MR0102163 (21:957) 0085.33503 CrossrefISIGoogle Scholar[26] Carl C. Farrington, Jr., Generating pseudo-random numbers in the Illiac, Digital Computer Laboratory Report, 74, University of Illinois, 1956 Google Scholar[27] E. C. Fieller, , T. Lewis and , E. S. Pearson, Correlated random normal deviates. $3,000$ sets of deviates, each giving 9 random pairs with correlations $0.1$$(0.1)$$0.9$, compiled from Herman Wold's Table of Tandom Normal Deviates (Tract no. XXV), Cambridge, at the University Press, 1955xv+60, Tracts for Computers, no. 26 MR0074728 (17,638e) 0065.11802 Google Scholar[28] H. Fisser, Some tests applied to pseudo-random numbers generated by v. Hoerner's rule, Numer. Math., 3 (1961), 247–249 10.1007/BF01386024 MR0130088 (23:B3120) 0101.10601 CrossrefGoogle Scholar[29] G. E. Forsythe, Generation and testing of $1,217,370$ "random" binary digits on the SWAG, Bull. Am. Math. Soc., 57 (1951), 304–, Abstract ISIGoogle Scholar[30] George E. Forsythe, Generation and testing of random digits at the National Bureau of Standards, Los Angeles, Monte Carlo Method, Appl. Math. Series 12, Nat. Bur. Stand., 1951, 34–35 Google Scholar[31] J. N. Franklin, On the equidistribution of pseudo-random numbers, Quart. Appl. Math., 16 (1958), 183–188 MR0093501 (20:25) 0085.12802 CrossrefGoogle Scholar[32] Robert Gage, Contents of Tippett's "Random Sampling Numbers", J. Amer. Statist. Assoc., 38 (1943), 223–227 MR0007969 (4,223b) 0060.29714 Google Scholar[33] E. N. Gilbert, Quasi-random binary sequences, Bell Telephone Laboratory, 1953, (Nov. 27) Google Scholar[34] E. N. Gilbert, Machine Computation of random numbers, MM-56-114-3, Bell Telephone Laboratory, 1956, (March 12) Google Scholar[35] D. I. Golenko, Formation of random numbers with arbitrary law of distribution, Computational Math., (1959), 83–92, in Russian Google Scholar[36] D. I. Golenko, Determination of characteristics of some stochastic processes by Monte Caro methods, Computational Math., (1959), 93–108, in Russian Google Scholar[37] D. I. Golenko and , V. P. Smiriagin, A source of random numbers which are equidistributed in $[0, 1]$, Publications Math. Inst., Hungarian Acad. Sci. 5, Series A, Fasc., 3 (1960), 241–253, in Russian, with English abstract 0096.11602 Google Scholar[38] I. J. Good, The serial test for sampling numbers and other tests for randomness, Proc. Cambridge Philos. Soc., 49 (1953), 276–284 MR0060786 (15,727c) 0051.36203 CrossrefISIGoogle Scholar[39] I. J. Good, On the serial test for random sequences, Ann. Math. Statist., 28 (1957), 262–264 MR0085667 (19,73h) 0083.14801 CrossrefISIGoogle Scholar[40] Bert F. Green, Jr., , J. E. Keith Smith and , Laura Klem, Empirical tests of an additive random number generator, J. Assoc. Comput. Mach., 6 (1959), 527–537 MR0107957 (21:6678) 0096.33901 CrossrefISIGoogle Scholar[41] Martin Greenberger, Notes on a new pseudo-random number generator, J. Assoc. Comp. Mach., 8 (1961), 163–167 0104.36005 CrossrefGoogle Scholar[42] Martin Greenberger, An a priori determination of serial correlation in computer generated random numbers, Math. Comp., 15 (1961), 383–389, See also corrigenda, Math. Comp. 16 (1962), p. 126 MR0144489 (26:2033) 0113.33504 CrossrefGoogle Scholar[43] Robert E. Greenwood, Coupon collector's test for random digits, Math. Tables Aids Comput., 9 (1955), 1–5, 224, 229. MR0068168 (16,840k) 0064.13906 CrossrefGoogle Scholar[44] O. Gross and , S. M. Johnson, Additive generation of pseudorandom numbers, Memorandum, 2132, RAND Corporation Research, 1958 Google Scholar[45] Fred Gruenberger, Tests of random digits, Math. Tables Other Aids Comp., 4 (1950), 244–245 Google Scholar[46] Fred Gruenberger and , A. M. Mark, The $d^{2}$ test of random digits, Math. Tables Other Aids Comp., 5 (1951), 109–110 Google Scholar[47] J. H. Halton, On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals, Numer. Math., 2 (1960), 84–90 10.1007/BF01386213 MR0121961 (22:12688) 0090.34505 CrossrefGoogle Scholar[48] H. C. Hamaker, A simple technique for producing random sampling numbers, Nederl. Akad. Wetensch., Proc., 52 (1949), 145–150 MR0032154 (11,260a) Google Scholar[49] Preston C. Hammer, The mid-square method of generating digits, Monte Carlo Method, Appl. Math. Series 12, Nat. Bur. Stand., 1951, 33– Google Scholar[50] J. M. Hammersley, Monte Carlo methods for solving multivariable problems, Ann. New York Acad. Sci., 86 (1960), 844–874 (1960) MR0117870 (22:8644) 0111.12405 ISIGoogle Scholar[51] R. W. Hamming, Numerical methods for scientists and engineers, International Series in Pure and Applied Mathematics, McGraw-Hill Book Co., Inc., New York, 1962xvii+411 MR0137279 (25:735) 0952.65500 Google Scholar[52] H. Burke Horton, A method for obtaining random numbers, Ann. Math. Statistics, 19 (1948), 81–85 MR0024085 (9,450h) 0031.37301 CrossrefISIGoogle Scholar[53] H. Burke Horton and , III., R. Tynes Smith, A direct method for producing random digits in any number system, Ann. Math. Statistics., 20 (1949), 82–90 MR0029117 (10,550f) 0041.26505 CrossrefISIGoogle Scholar[54] A. S. Householder, Monte Carlo method, Appl. Math. Series 12, Nat. Bur. Stand., 1951, (editor, with G. E. Forsythe and H. H. Germond) Google Scholar[55] D. G. N. Hunter, Note on a test for repeating cycles in a pseudo-random number generator, Comput. J., 3 (1960/1961), 9– 10.1093/comjnl/3.1.9 MR0111118 (22:1982) 0087.32706 CrossrefGoogle Scholar[56] Random number generation and testing, New York, 1959 Google Scholar[57] D. L. Johnson, Generating and testing pseudo random numbers on the IBM Type 701, Math. Tables Aids Comput., 10 (1956), 8–13 MR0076467 (17,902k) 0072.35705 CrossrefGoogle Scholar[58] M. L. Juncosa, Random number generation on the BRL high-speed computing machines, Rep. No. 855, Ballistic Research Laboratories, Aberdeen Proving Ground, Md., 1953, 25– MR0059617 (15,559c) Google Scholar[59] Herman Kahn, Applications of Monte Carlo, Memorandum, 1237, RAND Corporation Research, 1956, Also appeared as AECU 3259 Google Scholar[60] Herman Kahn, Herbert A. Meyer, Use of different Monte Carlo sampling techniques, Symposium on Monte Carlo methods, University of Florida, 1954, John Wiley and Sons, Inc., New York, 1956, 146–190 MR0079819 (18,151c) Google Scholar[61] M. G. Kendall and , B. Babington-Smith, Randomness and random sampling numbers, J. Roy. Stat. Soc., 101 (1938), 147–166 CrossrefGoogle Scholar[62] M. G. Kendall and , B. Babington-Smith, Second paper on random sampling numbers, J. Roy. Stat. Soc., 6 (1939), 51–61, Supplement CrossrefGoogle Scholar[63] M. G. Kendall and , B. Babington-Smith, Tables of random sampling numbers, Tracts for Computers, no. 24, Cambridge, 1939 0024.42902 Google Scholar[64] W. O. Kermack and , A. G. McKendrick, Tests for randomness in a series of numerical observations, Proc. Roy. Soc. Edinburgh, 57 (1937), 228–240 0016.41301 CrossrefGoogle Scholar[65] W. O. Kermack and , A. G. McKendrick, Some distributions associated with a randomly arranged set of numbers, Proc. Roy. Soc. Edinburgh, 57 (1937), 332–376 0017.27205 CrossrefGoogle Scholar[66] Heidi G. Kuehn, A $48$-bit pseudo-random number generator, Comm. ACM, 4 (1961), 350–352 10.1145/366678.366690 MR0144490 (26:2034) 0097.34001 CrossrefISIGoogle Scholar[67] D. H. Lehmer, Mathematical methods in large-scale computing units, Proceedings of a Second Symposium on Large-Scale Digital Calculating Machinery, 1949, Harvard University Press, Cambridge, Mass., 1951, 141–146 MR0044899 (13,495f) 0045.40001 Google Scholar[68] D. H. Lehmer, Combinatorial problems with digital computers, Proc. Fourth Can. Math. Congress, 1957, 160–173 0103.35303 Google Scholar[69] P. H. Leslie and , J. C. Gower, The properties of a stochastic model for two competing species, Biometrika, 45 (1958), 316–330 MR0102448 (21:1241) 0087.34501 CrossrefISIGoogle Scholar[70] H. Levene and , J. Wolfowitz, The covariance matrix of runs up and down, Ann. Math. Statistics, 15 (1944), 58–69 MR0009823 (5,208e) 0063.03502 CrossrefGoogle Scholar[71] Werner Liniger, On a method by D. H. Lehmer for the generation of pseudo random numbers, Numer. Math., 3 (1961), 265–270 10.1007/BF01386027 MR0129529 (23:B2565) 0100.33702 CrossrefGoogle Scholar[72] Ernest J. Lytle, Jr., Herbert A. Meyer, A description of the generation and testing of a set of random normal deviates, Symposium on Monte Carlo methods, University of Florida, 1954, John Wiley and Sons, Inc., New York, 1956, 234–248 MR0080381 (18,239a) Google Scholar[73] P. C. Mahalanobis, Tables of random samples from a normal population, Sankyha, 1 (1934), 289–328 Google Scholar[74] S. E. Mamangakis, Remarks on the Fibonacci series modulo m, Amer. Math. Monthly, 68 (1961), 648–649 MR0130206 (24:A73) 0101.03202 CrossrefISIGoogle Scholar[75] G. Marsaglia, Expressing a random variable in terms of uniform random variables, Ann. Math. Statist., 32 (1961), 894–898 MR0130090 (23:B3122) 0139.35604 CrossrefGoogle Scholar[76] G. Marsaglia, Generating exponential random variables, Ann. Math. Statist., 32 (1961), 899–900 MR0130091 (23:B3123) 0139.35603 CrossrefGoogle Scholar[77] G. Marsaglia, Remark on generating a random variable having a nearly linear density function, Mathematical Note no. 242, Boeing Scientific Research Laboratories, Seattle, 1961 Google Scholar[78] G. Marsaglia, Procedures for generating normal random variables, II, Mathematical Note no. 243, Boeing Scientific Research Laboratories, Seattle, 1961 CrossrefGoogle Scholar[79] Andrew W. Marshall, Herbert A. Meyer, The use of multistage sampling schemes in Monte Carlo computations, Symposium on Monte Carlo methods, University of Florida, 1954, John Wiley and Sons, Inc., New York, 1956, 123–140 MR0079827 (18,153b) Google Scholar[80] A. De Matteis and , B. Faleschini, Pseudo-random sequences of equal length, Report, 88, Comitato Nazionale per l'Energia Nucleare, Bologna, 1960 Google Scholar[81] J. W. Mauchly, Pseudo-random numbers, Report, Eckert-Mauchly Computer Corporation, 1949 Google Scholar[82] N. Metropolis, Herbert A. Meyer, Phase shifts-middle squares-wave equations, Symposium on Monte Carlo methods, University of Florida, 1954, John Wiley and Sons, Inc., New York, 1956, 29–36 MR0088787 (19,580c) Google Scholar[83] Herbert A. Meyer, Symposium on Monte Carlo methods, Wiley, New York, 1956 0070.13402 Google Scholar[84] H. A. Meyer, , L. S. Gephart and , N. L. Rasmussen, On the generation and testing of random digits, WADC Tech. Rep., 54-55, Air Res. Dev. Command, Wright-Patterson Air Force Base, 1954 Google Scholar[85] Jack Moshman, The generation of pseudo-random numbers on a decimal calculator, J. Assoc. Computing Mach., 1 (1954), 88–91 MR0061882 (15,900c) CrossrefISIGoogle Scholar[86] Mervin E. Muller, An inverse method for the generation of random normal deviates on large-scale computers, Math. Tables Aids Comput., 12 (1958), 167–174 MR0102905 (21:1690) 0082.33602 CrossrefGoogle Scholar[87] Mervin E. Muller, A comparison of methods for generating normal deviates on digital computers, J. Assoc. Comput. Mach., 6 (1959), 376–383 MR0105785 (21:4521) 0086.11601 CrossrefISIGoogle Scholar[88] Mervin E. Muller, A note on a method for generating points uniformly on N-dimensional spheres, Comm. Assoc. Comp. Mach. 2, (1959), 19–20 0086.11605 Google Scholar[89] K. N. Nair, On Tippett's random sampling numbers, Sankhya, 4 (1938), 65–72 Google Scholar[90] Gösta Neovius, Artificial traffic trials using digital computers, Ericsson Technics, 11 (1955), 279–291 MR0074136 (17,542e) Google Scholar[91] Guy H. Orcutt, , Martin Greenberger, , John Korbel and , Alice M. Rivlin, Microanalysis of socioeconomic systems: a simulation study, Harper, New York, 1961 Google Scholar[92] Oystein Ore, Number Theory and Its History, McGraw-Hill Book Company, Inc., New York, 1948x+370 MR0026059 (10,100b) 0041.36805 Google Scholar[93] E. S. Page, The Monte Carlo solution of some integral equations, Proc. Cambridge Philos. Soc., 50 (1954), 414–425 MR0064496 (16,291d) 0055.35805 CrossrefISIGoogle Scholar[94] E. S. Page, Pseudo-random elements for computers, Appl. Statist., 8 (1959), 124–131 MR0107956 (21:6677) CrossrefISIGoogle Scholar[95] G. K. Pakov, Generation of a random correlated quantity on a high-speed electronic computer, Soviet Develop. Infor. Proc. Machine Translat., U. S. Joint Publ. Res. Service JPRS : 5784, 1960, Nov. Google Scholar[96] Z. Pawlak, Flip-flop as generator of random binary digits, Math. Tables Aids Comput., 10 (1956), 28–30 MR0076466 (17,902j) Google Scholar[97] Paul Peach, Bias in pseudo-random numbers, J. Amer. Statist. Assoc., 56 (1961), 610–618 MR0134452 (24:B505) 0111.14801 CrossrefISIGoogle Scholar[98] L. G. Peck, On uniform distribution of algebraic numbers, Proc. Amer. Math. Soc., 4 (1953), 440–443 MR0055385 (14,1066e) 0050.27601 CrossrefISIGoogle Scholar[99] Anthony Ralston and , Herbert S. Wilf, Mathematical methods for digital computers, John Wiley & Sons Inc., New York, 1960xi+293 MR0117906 (22:8680) 0089.12602 Google Scholar[100] Band Corporation, A million random digits with $100,000$ normal deviates, The Free Press, Glencoe, Ill., 1955xxv+200 MR0067568 (16,749i) 0068.12905 Google Scholar[101] C. Radhakrishna Rao, Generation of random permutations of given number of elements using random sampling numbers, Sankhya, A23 (1961), 305–307 0104.12103 Google Scholar[102] R. D. Richtmyer, The evaluation of definite integrals, and a Quasi-Monte-Carlo method based on the properties of algebraic numbers, LA-1342, Los Alamos Scientific Laboratory, 1951 Google Scholar[103] R. D. Richtmyer, A non-random sampling method, based on congruences, for "Monte Caro" problems, Report Physics, NYO-8674, Institute Math. Sci., NYU, 1958 Google Scholar[104] R. D. Richtmyer, Monte Carlo methodsProc. Sympos. Appl. Math., Vol. XI, American Mathematical Society, Providence, R.I., 1961, 190–205, Nuclear Reactor Theory MR0119381 (22:10145) CrossrefGoogle Scholar[105] R. D. Richtmyer, , Marjorie Devaney and , N. Metropolis, Continued fraction expansions of algebraic numbers, Numer. Math., 4 (1962), 68–84 10.1007/BF01386297 MR0136574 (25:44) 0101.28101 CrossrefGoogle Scholar[106] A. C. Rosander, The use of inversions as a tsst of random order, J. Amer. Stat. Assoc., 37 (1942), 352–358 CrossrefGoogle Scholar[107] A. Rotenberg, A new pseudo-random number generator, J. Assoc. Comput. Mach., 7 (1960), 75–77 MR0117868 (22:8642) CrossrefISIGoogle Scholar[108] Lorraine Schwartz, Review of [73], Math. Tables Other Aids Comp., 8 (1954), 228– CrossrefGoogle Scholar[109] J. M. Sengupta and , Nikhilesh Bhattacharya, Tables of random normal deviates, Sankhya, 20 (1958), 249–286 MR0106553 (21:5284) 0228.65003 Google Scholar[110] Daniel Shanks and , John W. Wrench, Jr., Calculation of $\pi$ to 100,000 decimals, Math. Comp., 16 (1962), 76–99 MR0136051 (24:B2090) 0104.36002 Google Scholar[111] I. M. Sobol', Pseudo-random numbers for the machine "Strela", Theory Prob. Applications, 3 (1958), 192–197 0124.34703 LinkGoogle Scholar[112] Google Scholar[113] J. Spanier, A unified approach to Monte Carlo methods and an application to a multigroup calculation of absorption rates, SIAM Rev., 4 (1962), 115–134 10.1137/1004030 MR0137282 (25:737) 0106.13501 LinkISIGoogle Scholar[114] Gordon Spenser, Random numbers and their generation, Computers and Automation, 4 (1955), 10–11, 23 MR0071855 (17,194d) Google Scholar[115] Fred Sterzer, Random number generator using subharmonic oscillators, Rev. Sci. Insts., 30 (1959), 241–243 10.1063/1.1716525 CrossrefISIGoogle Scholar[116] Student, The probable error of a mean, Biometrika, 6 (1908), 1–25 CrossrefGoogle Scholar[117] Frieda S. Swed and , C. Eisenhart, Tables for testing randomness of grouping in a sequence of alternatives, Ann. Math. Statistics, 14 (1943), 66–87 MR0007970 (4,223c) 0060.30504 CrossrefGoogle Scholar[118] Olga Taussky and , John Todd, Herbert A. Meyer, Generation and testing of pseudo-random numbers, Symposium on Monte Carlo methods, University of Florida, 1954, John Wiley and Sons, Inc., New York, 1956, 15–28 MR0080382 (18,239b) Google Scholar[119] D. Teichroew, Masters Thesis, Distribution sampling with high speed computers, Diss., Univ. of North Carolina, 1953 Google Scholar[120] W. E. Thomson, A modified congruence method of generating pseudo-random numbers, Comp. J., 1 (1958), 83–86 10.1093/comjnl/1.2.83 0087.32705 CrossrefISIGoogle Scholar[121] W. E. Thomson, ERNIE—A mathematical and statistical analysis, J. Roy. Stat. Soc., A122 (1959), 301–324, discussion pp. 324–333 CrossrefGoogle Scholar[122] L. H. C. Tippett, On the extreme individuals and the range of samples taken from a normal population, Biometrika, 17 (1925), 364–387 CrossrefGoogle Scholar[123] L. H. C. Tippett, Random sampling numbers, Tracts for Computers, no. 15, Cambridge, 1927 Google Scholar[124] K. D. Tocher, The application of automatic computers to sampling experiments, J. Roy. Statist. Soc. Ser. B., 16 (1954), 39–61; discussion 61–75 MR0064476 (16,288a) 0055.36902 Google Scholar[125] John Todd, Experiments in the solution of differential equations by Monte Carlo methods, J. Washington Acad. Sci., 44 (1954), 377–381 MR0067584 (16,752c) 0059.11101 Google Scholar[126] John Todd, Survey of numerical analysis, McGraw-Hill Book Co., Inc., New York, 1962xvi+589 MR0135221 (24:B1271) 0101.33601 Google Scholar[127] C. B. Tompkins, Review of [100], Math. Tables Other Aids Comp., 10 (1956), 39–43 Google Scholar[128] C. B. Tompkins, Review of "Japanese Standards Association, random number generating icosahedral dice", Math. Comp., 15 (1961), 94–95 CrossrefGoogle Scholar[129] C. Tompkins, Machine attacks on problems whose variables are permutations, Proceedings of Symposia in Applied Mathematics. Vol. VI. Numerical analysis, Published by McGraw-Hill Book Company, Inc., New York, for the American Mathematical Society, Providence, R.I., 1956, 195–211, Numerical Analysis MR0080380 (18,238e) 0071.12202 Google Scholar[130] A. Van Wijngaarden, Mathematics and computing, Automatic Digital Computation, Proc. Symposium, National Physical Laboratory, London, 1954, 125–129, H.M.S.O. Google Scholar[131] C. W. Vickery, On drawing a random sample from a set of punched cards, J. Roy. Stat. Soc., 6 (1939), 62–66, Supplement Google Scholar[132] Sebastian von Hoerner, Herstellung von Zufallszahlen auf Rechenautomaten, Z. Angew. Math. Phys., 8 (1957), 26–52 10.1007/BF01601153 MR0083186 (18,675a) 0077.11606 CrossrefGoogle Scholar[133] John Von Neumann, Various techniques used in connection with random digits, Monte Carlo Method, Appl. Math. Series 12, Nat. Bur. Stand., 1951, 36–38 Google Scholar[134] D. F. Votaw, Jr. and , J. A. Rafferty, High speed sampling, Math. Tables and Other Aids to Computation, 5 (1951), 1–8 MR0039181 (12,509d) 0045.06706 CrossrefGoogle Scholar[135] D. D. Wall, Fibonacci series modulo m, Amer. Math. Monthly, 67 (1960), 525–532 MR0120188 (22:10945) 0101.03201 CrossrefGoogle Scholar[136] Donald D. Wall, A random number test for large samples, Proc. First IBM Conf. Stat., Poughkeepsie, 1960, 7–11 Google Scholar[137] John E. Walsh, Concerning compound randomization in the binary system, Ann. Math. Statistics, 20 (1949), 580–589 MR0032156 (11,260c) 0036.09105 CrossrefISIGoogle Scholar[138] John E. Walsh, An experimental method for obtaining random digits and permutations, Sankhya, 17 (1957), 355–360 0079.34401 Google Scholar[139] James G. Wendel, Lectures on Monte Carlo, Summer Session Courses on Numerical Analysis, Univ. of Mich., 1961 Google Scholar[140] Hermann Weyl, Über die Gleichverteilung von Zahlen mod. Eins, Math. Ann., 77 (1916), 313–352 10.1007/BF01475864 MR1511862 CrossrefGoogle Scholar[141] Herman Wold, Random Normal Deviates. 25,000 Items Compiled from Tract No. XXIV (M. G. Kendall and B. Babington Smith's Tables of Random Sampling Numbers), Cambridge University Press, 1948xiii+51, Tracts for Computers, no. 25 MR0029132 (10,553c) 0036.20603 Google Scholar[142] G. Udny Yule, A test of Tippett's random sampling numbers, J. Roy. Stat. Soc., 101 (1938), 167–172 CrossrefGoogle Scholar[143] Neal Zierler, Linear recurring sequences, J. Soc. Indust. Appl. Math., 7 (1959), 31–48 10.1137/0107003 MR0101979 (21:781) 0096.33804 LinkISIGoogle Scholar Previous article Next article FiguresRelatedReferencesCited ByDetails DR-STRaNGe: End-to-End System Design for DRAM-based True Random Number Generators2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA) | 1 Apr 2022 Cross Ref A brief and understandable guide to pseudo-random number generators and specific models for securityStatistics Surveys, Vol. 16, No. none | 1 Jan 2022 Cross Ref Visualizing probability density distribution of polarization speckle with electron cloud diagramsFifteenth International Conference on Correlation Optics | 21 Dec 2021 Cross Ref QUAC-TRNG: High-Throughput True Random Number Generation Using Quadruple Row Activation in Commodity DRAM Chips2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA) | 1 Jun 2021 Cross Ref Coupling chaotic system based on unit transform and its applications in image encryptionSignal Processing, Vol. 178 | 1 Jan 2021 Cross Ref Generation of Pseudo Random Sequence Using Modified Newton Raphson MethodAdvanced Computing | 11 February 2021 Cross Ref Rotating Disk Cryptosystem: RDCJournal of Information and Optimization Sciences, Vol. 41, No. 5 | 7 November 2019 Cross Ref Jacob's Ladder: Prime Numbers in 2DMathematical and Computational Applications, Vol. 25, No. 1 | 11 January 2020 Cross Ref Pseudorandom Number Generator (PRNG) Design Using Hyper-Chaotic Modified Robust Logistic Map (HC-MRLM)Electronics, Vol. 9, No. 1 | 6 January 2020 Cross Ref Uncertainty quantification in materials modelingUncertainty Quantification in Multiscale Materials Modeling | 1 Jan 2020 Cross Ref Probability theory for analyzing nature-inspired algorithmsNature-Inspired Computation and Swarm Intelligence | 1 Jan 2020 Cross Ref Generating Random Floating-Point Numbers by Dividing Integers: A Case StudyComputational Science – ICCS 2020 | 15 June 2020 Cross Ref The Threat of Intelligent Attackers Using Deep LearningDeep Learning Strategies for Security Enhancement in Wireless Sensor Networks | 1 Jan 2020 Cross Ref Parallelizing a multi-objective optimization approach for extractive multi-document text summarizationJournal of Parallel and Distributed Computing, Vol. 134 | 1 Dec 2019 Cross Ref BIBLIOGRAPHYSimulation and Computational Red Teaming for Problem Solving | 25 October 2019 Cross Ref Chained Compressed Sensing: A Blockchain-Inspired Approach for Low-Cost Security in IoT SensingIEEE Internet of Things Journal, Vol. 6, No. 4 | 1 Aug 2019 Cross Ref Multiscale Simulations of Biological Membranes: The Challenge To Understand Biological Phenomena in a Living SubstanceChemical Reviews, Vol. 119, No. 9 | 12 March 2019 Cross Ref Chained Compressed Sensing for Iot Node SecurityICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) | 1 May 2019 Cross Ref ARMED: How Automatic Malware Modifications Can Evade Static Detection?2019 5th International Conference on Information Management (ICIM) | 1 Mar 2019 Cross Ref ReferencesReliability Analysis for Asset Management of Electric Power Grids | 4 January 2019 Cross Ref NeMeSys - A Showcase of Data Oriented Near Memory Graph ProcessingProceedings of the 2019 International Conference on Management of Data - SIGMOD '19 | 1 Jan 2019 Cross Ref Deterministic-Embedded Monte Carlo Approach to Find out an Objective Item in a Large Number of Data SetsInternational Journal of Applied Physics and Mathematics, Vol. 9, No. 4 | 1 January 2019 Cross Ref DEDS Stochastic Behaviour and ModellingModelling and Simulation | 2 January 2020 Cross Ref Time average estimation in the fraction-of-time probability frameworkSignal Processing, Vol. 153 | 1 Dec 2018 Cross Ref Molecular dice: Random number generators á la BoltzmannPhysical Review E, Vol. 98, No. 6 | 28 December 2018 Cross Ref Establishing Data Integrity in Networks
Referência(s)