Clathrin-Coated Pits and Coated Vesicles: Functional and Structural Studies
1983; Lippincott Williams & Wilkins; Volume: 3; Issue: 3 Linguagem: Inglês
10.1002/hep.1840030326
ISSN1527-3350
AutoresClifford J. Steer, Richard D. Klausner,
Tópico(s)Toxin Mechanisms and Immunotoxins
ResumoHepatologyVolume 3, Issue 3 p. 437-454 ArticleFree Access Clathrin-Coated Pits and Coated Vesicles: Functional and Structural Studies† Clifford J. Steer, Corresponding Author Clifford J. Steer Laboratory of Biochemistry and Metabolism, National Institute of Arthritis, Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20205Clifford Steer, M.D., NIH, Building 10, Room 9N-105, Bethesda, Maryland 20205.===Search for more papers by this authorRichard D. Klausner, Richard D. Klausner Laboratory of Biochemistry and Metabolism, National Institute of Arthritis, Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20205Search for more papers by this author Clifford J. Steer, Corresponding Author Clifford J. Steer Laboratory of Biochemistry and Metabolism, National Institute of Arthritis, Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20205Clifford Steer, M.D., NIH, Building 10, Room 9N-105, Bethesda, Maryland 20205.===Search for more papers by this authorRichard D. Klausner, Richard D. Klausner Laboratory of Biochemistry and Metabolism, National Institute of Arthritis, Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20205Search for more papers by this author First published: 1983 https://doi.org/10.1002/hep.1840030326Citations: 31 † We would like to dedicate this review article to Dr. Gilbert Ashwell for his continued advice, suggestions, and friendship AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat References 1 Nevorotin AJ. Coated vesicles in different cell types: some functional implications. In: CD Ockleford, A Whyte, eds. Coated vesicles. Cambridge, England: Cambridge University Press, 1980: 25–54. 10.1017/CBO9780511735509.004 Google Scholar 2 Newcomb EH. Coated vesicles: their occurrence in different plant cell types. In: CD Ockleford, A Whyte, eds. Coated vesicles. Cambridge, England: Cambridge University Press, 1980: 55–68. 10.1017/CBO9780511735509.005 Google Scholar 3 Rosenbluth J, Wissig SL. The distribution of exogenous ferritin in toad spinal ganglia and the mechanism of its uptake by neurons. J Cell Biol 1964; 23: 307–325. 10.1083/jcb.23.2.307 CASPubMedWeb of Science®Google Scholar 4 Roth TF, Porter KR. Yolk protein uptake in the oocyte of the mosquito Aedes aegypti L. J Cell Biol 1964; 20: 313–332. 10.1083/jcb.20.2.313 CASPubMedWeb of Science®Google Scholar 5 Slayter H. Clathrin locks up vesicle structure. Nature 1982; 298: 228. 10.1038/298228a0 CASPubMedWeb of Science®Google Scholar 6 Pearse BMF, Bretscher MS. Membrane recycling by coated vesicles. Ann Rev Biochem 1981; 50: 85–101. 10.1146/annurev.bi.50.070181.000505 CASPubMedWeb of Science®Google Scholar 7 Steinman RM, Mellman IS, Muller WA, et al. Endocytosis and the recycling of plasma membrane. J Cell Biol 1983; 96: 1–27. 10.1083/jcb.96.1.1 CASPubMedWeb of Science®Google Scholar 8 Anderson RGW, Goldstein JL, Brown MS. Localization of low density lipoprotein receptors on plasma membrane of normal human fibroblasts and their absence in cells from a familial hypercholesterolemia homozygote. Proc Natl Acad Sci USA 1976; 73: 2434–2438. 10.1073/pnas.73.7.2434 CASPubMedWeb of Science®Google Scholar 9 Rodewald R. Distribution of immunoglobulin G receptors in the small intestine of the young rat. J Cell Biol 1980; 85: 18–32. 10.1083/jcb.85.1.18 CASPubMedWeb of Science®Google Scholar 10 Kahn CR, Baird KL, Jarrett DB, et al. Direct demonstration that receptor crosslinking or aggregation is important in insulin action. Proc Natl Acad Sci USA 1978; 75: 4209–4213. 10.1073/pnas.75.9.4209 CASPubMedGoogle Scholar 11 Schlessinger J, Shechter Y, Willingham MC, et al. Direct visualization of binding, aggregation and internalization of insulin and epidermal growth factor on living fibroblastic cells. Proc Natl Acad Sci USA 1978; 75: 2659–2663. 10.1073/pnas.75.6.2659 CASPubMedWeb of Science®Google Scholar 12 McKanna JA, Haigler HT, Cohen S. Hormone receptor topology and dynamics: morphological analysis using ferritin-labeled epidermal growth factor. Proc Natl Acad Sci USA 1979; 76: 5689–5693. 10.1073/pnas.76.11.5689 CASPubMedWeb of Science®Google Scholar 13 Schlessinger J, Shechter Y, Cuatrecasas P, et al. Quantitative determination of the lateral diffusion coefficients of the hormone-receptor complexes of insulin and epidermal growth factor on the plasma membrane of cultured fibroblasts. Proc Natl Acad Sci USA 1978; 75: 5353–5357. 10.1073/pnas.75.11.5353 CASPubMedWeb of Science®Google Scholar 14 Haigler HT, McKanna JA, Cohen S. Direct visualization of the binding and internalization of a ferritin conjugate of epidermal growth factor in human carcinoma cells A-431. J Cell Biol 1979; 81: 382–395. 10.1083/jcb.81.2.382 CASPubMedWeb of Science®Google Scholar 15 Wall DA, Hubbard AL. Galactose-specific recognition system of mammalian liver: receptor distribution on the hepatocyte cell surface. J Cell Biol 1981; 90: 687–696. 10.1083/jcb.90.3.687 CASPubMedWeb of Science®Google Scholar 16 Matsuura S, Nakada H, Sawamura T, et al. Distribution of an asialoglycoprotein receptor on rat hepatocyte cell surface. J Cell Biol 1982; 95: 864–875. 10.1083/jcb.95.3.864 CASPubMedWeb of Science®Google Scholar 17 Zeitlin PL, Hubbard AL. Cell surface distribution and intracellular fate of asialoglycoproteins: a morphological and biochemical study of isolated rat hepatocytes and monolayer cultures. J Cell Biol 1982; 92: 634–647. 10.1083/jcb.92.3.634 CASPubMedWeb of Science®Google Scholar 18 Maxfield FR, Willingham MC, Haigler HT, et al. Binding, surface mobility, internalization, and degradation of rhodamine-labeled a2-macroglobulin. Biochemistry 1981; 20: 5353–5358. 10.1021/bi00521a041 CASPubMedWeb of Science®Google Scholar 19 Montesano R, Perrelet A, Vassalli P, et al. Absence of filipin-sterol complexes from large coated pits on the surface of culture cells. Proc Natl Acad Sci USA 1979; 76: 6391–6395. 10.1073/pnas.76.12.6391 CASPubMedWeb of Science®Google Scholar 20 Robenek H, Rassat J, Hesz A, et al. A correlative study on the topographical distribution of the receptors for low density lipoprotein (LDL) conjugated to colloidal gold in cultured human skin fibroblasts employing thin section, freeze-fracture, deep-etching, and surface replication techniques. Eur J Cell Biol 1982; 27: 242–250. CASPubMedWeb of Science®Google Scholar 21 Bretscher MS. Directed lipid flow in cell membranes. Nature 1976; 260: 21–22. 10.1038/260021a0 CASPubMedWeb of Science®Google Scholar 22 Orci L, Carpentier J-L, Perrelet A, et al. Occurrence of low density lipoprotein receptors within large pits on the surface of human fibroblasts as demonstrated by freeze-etching. Exp Cell Res 1978; 113: 1–13. 10.1016/0014-4827(78)90081-2 CASPubMedWeb of Science®Google Scholar 23 Brown MS, Goldstein JL. Analysis of a mutant strain of human fibroblasts with a defect in the internalization of receptor-bound low density lipoprotein. Cell 1976; 9: 663–674. 10.1016/0092-8674(76)90130-6 CASPubMedWeb of Science®Google Scholar 24 Anderson RGW, Goldstein JL, Brown MS. A mutation that impairs the ability of lipoprotein receptors to localize in coated pits on the cell surface of human fibroblasts. Nature 1977; 270: 695–699. 10.1038/270695a0 CASPubMedWeb of Science®Google Scholar 25 Barak LS, Webb WW. Diffusion of low density lipoprotein-receptor complex on human fibroblasts. J Cell Biol 1982; 95: 846–852. 10.1083/jcb.95.3.846 CASPubMedWeb of Science®Google Scholar 26 Goldstein B, Wofsy C, Bell G. Interactions of low density lipoprotein receptors with coated pits on human fibroblasts: estimate of the forward rate constant and comparison with the diffusion limit. Proc Natl Acad Sci USA 1981; 78: 5695–5698. 10.1073/pnas.78.9.5695 CASPubMedWeb of Science®Google Scholar 27 Carpentier J-L, Gorden P, Anderson RGW, et al. Co-localization of ,121I-epidermal growth factor and ferritin-low density lipoprotein in coated pits: a quantitative electron microscopic study in normal and mutant human fibroblasts. J Cell Biol 1982; 95: 73–77. 10.1083/jcb.95.1.73 PubMedWeb of Science®Google Scholar 28 Brown MS, Goldstein JL. Receptor-mediated endocytosis: insights from the lipoprotein receptor system. Proc Natl Acad Sci USA 1979; 76: 3330–3337. 10.1073/pnas.76.7.3330 CASPubMedWeb of Science®Google Scholar 29 Anderson RGW, Goldstein JL, Brown MS. Fluorescence visualization of receptor bound low density lipoprotein in human fibroblasts. J Receptor Res 1980; 1: 17–39. 10.3109/10799898009039253 CASPubMedWeb of Science®Google Scholar 30 Schneider WJ, Basu SK, McPhaul MJ, et al. Solubilization of the low density lipoprotein receptor. Proc Natl Acad Sci USA 1979; 76: 5577–5581. 10.1073/pnas.76.11.5577 CASPubMedWeb of Science®Google Scholar 31 Anderson RGW, Brown MS, Goldstein JL. Inefficient internalization of receptor-bound low density lipoprotein in human carcinoma A-431 cells. J Cell Biol 1981; 88: 441–452. 10.1083/jcb.88.2.441 CASPubMedWeb of Science®Google Scholar 32 Attie AD, Pittman RC, Steinberg D. Hepatic catabolism of low density lipoprotein: mechanisms and metabolic consequences. Hepatology 1982; 2: 269–281. 10.1002/hep.1840020215 CASPubMedWeb of Science®Google Scholar 33 Davis RA, Roheim PS. Pharmacologically induced hypolipidemia: the ethinyl estradiol-treated rat. Atherosclerosis 1978; 30: 293–299. 10.1016/0021-9150(78)90122-3 CASPubMedWeb of Science®Google Scholar 34 Chao Y-S, Windier EE, Chen GC, et al. Hepatic catabolism of rat and human lipoproteins in rats treated with 17a-ethinyl estradiol. J Biol Chem 1979; 254: 11360–11366. CASPubMedWeb of Science®Google Scholar 35 Kovanen PT, Brown MS, Goldstein JL. Increased binding of low density lipoprotein to liver membranes from rats treated with 17-ethinyl estradiol. J Biol Chem 1979; 254: 11367–11373. CASPubMedWeb of Science®Google Scholar 36 Handley DA, Arbeeny CM, Eder HA, et al. Hepatic binding and internalization of low density lipoprotein-gold conjugates in rats treated with 17 α-ethinylestradiol. J Cell Biol 1981; 90: 778–787. 10.1083/jcb.90.3.778 CASPubMedWeb of Science®Google Scholar 37 Brown MS, Anderson RGW, Basu SK, et al. Recycling of cell-surface receptors: observations from the LDL receptor system. Cold Spring Harbor Symposia on Quantitative Biol 1982; 46: 713–721. 10.1101/SQB.1982.046.01.068 CASPubMedWeb of Science®Google Scholar 38 Basu SK, Goldstein JL, Anderson RGW, et al. Monensin interrupts the recycling of low density lipoprotein receptors in human fibroblasts. Cell 1981; 24: 493–502. 10.1016/0092-8674(81)90340-8 CASPubMedWeb of Science®Google Scholar 39 Ashwell G, Harford J. Carbohydrate-specific receptors of the liver. Ann Rev Biochem 1982; 51: 531–554. 10.1146/annurev.bi.51.070182.002531 CASPubMedWeb of Science®Google Scholar 40 Steer CJ, Ashwell G. Studies on a mammalian hepatic binding protein specific for asialoglycoproteins: evidence for receptor recycling in isolated rat hepatocytes. J Biol Chem 1980; 255: 3008–3013. CASPubMedWeb of Science®Google Scholar 41 Wall DA, Wilson G, Hubbard AL. The galactose-specific recognition system of mammalian liver: the route of ligand internalization in rat hepatocytes. Cell 1980; 21: 79–93. 10.1016/0092-8674(80)90116-6 CASPubMedWeb of Science®Google Scholar 42 Roth TF, Cutting JA, Atlas SB. Protein transport: a selective membrane mechanism. J Supramol Structure 1976; 4: 527–548. 10.1002/jss.400040413 CASPubMedWeb of Science®Google Scholar 43 Geuze HJ, Slot JW, Strous GJAM, et al. Intracellular site of asialoglycoprotein receptor-ligand uncoupling: double-label im-munoelectron microscopy during receptor-mediated endocytosis. Cell 1983; 32: 277–287. 10.1016/0092-8674(83)90518-4 CASPubMedWeb of Science®Google Scholar 44 van Deurs B, Nilausen K. Pinocytosis in mouse L-fibroblasts: ultrastructural evidence for a direct membrane shuttle between the plasma membrane and the lysosomal compartment. J Cell Biol 1982; 94: 279–286. 10.1083/jcb.94.2.279 CASPubMedWeb of Science®Google Scholar 45 Tycko B, Maxfield FR. Rapid acidification of endocytic vesicles containing a2-macroglobulin. Cell 1982; 28: 643–651. 10.1016/0092-8674(82)90219-7 CASPubMedWeb of Science®Google Scholar 46 Maxfield FR. Weak bases and ionophores rapidly and reversibly raise the pH of endocytic vesicles in cultured mouse fibroblasts. J Cell Biol 1982; 95: 676–681. 10.1083/jcb.95.2.676 CASPubMedWeb of Science®Google Scholar 47 Van Leuven F, Cassiman JJ, Van Den Berghe H. Primary amines inhibit recycling of α2M receptors in fibroblasts. Cell 1980; 20: 37–43. 10.1016/0092-8674(80)90232-9 CASPubMedWeb of Science®Google Scholar 48 Tietze C, Schlesinger P, Stahl P. Mannose-specific endocytosis receptor of alveolar macrophages: demonstration of two functionally distinct intracellular pools of receptor and their roles in receptor recycling. J Cell Biol 1982; 92: 417–424. 10.1083/jcb.92.2.417 CASPubMedWeb of Science®Google Scholar 49 Harford J, Wolkoff AW, Ashwell G, et al. Monensin inhibits intracellular dissociation of asialoglycoproteins from their receptor. J Cell Biol 1983 (in press). Google Scholar 50 White J, Matkin K, Helenius A. Cell fusion by Semliki Forest, influenza, and vesicular stomatitis viruses. J Cell Biol 1981; 89: 674–679. 10.1083/jcb.89.3.674 CASPubMedWeb of Science®Google Scholar 51 Keen JH, Maxfield FR, Hardegree MC, et al. Receptor-mediated endocytosis of diphtheria toxin by cells in culture. Proc Natl Acad Sci USA 1982; 79: 2912–2916. 10.1073/pnas.79.9.2912 CASPubMedWeb of Science®Google Scholar 52 Miller DK, Lenard J. Antihistamines, local anesthetics, and other amines as antiviral agents. Proc Natl Acad Sci USA 1981; 78: 3605–3609. 10.1073/pnas.78.6.3605 CASPubMedWeb of Science®Google Scholar 53 Marnell MH, Stookey M, Draper RK. Monensin blocks the transport of diphtheria toxin to the cell cytoplasm. J Cell Biol 1982; 93: 57–62. 10.1083/jcb.93.1.57 CASPubMedWeb of Science®Google Scholar 54 Marsh M, Wellsteed J, Kern H, et al. Monensin inhibits Semliki Forest virus penetration into culture cells. Proc Natl Acad Sci USA 1982; 79: 5297–5301. 10.1073/pnas.79.17.5297 CASPubMedWeb of Science®Google Scholar 55 Salisbury JL, Condeelis JS, Satir P. Role of coated vesicles, microfilaments, and calmodulin in receptor-mediated endocytosis by cultured B lymphoblastoid cells. J Cell Biol 1980; 87: 132–141. 10.1083/jcb.87.1.132 CASPubMedWeb of Science®Google Scholar 56 Salisbury JL, Condeelis JS, Maihle NJ, et al. Receptor-mediated endocytosis by clathrin-coated vesicles: evidence for a dynamic pathway. Cold Spring Harbor Symposia on Quantitative Biol 1982; 46: 733–741. 10.1101/SQB.1982.046.01.070 Web of Science®Google Scholar 57 Bretscher MS, Thomson JN, Pearse BMF. Coated pits act as molecular filters. Proc Natl Acad Sci USA 1980; 77: 4156–4159. 10.1073/pnas.77.7.4156 CASPubMedWeb of Science®Google Scholar 58 Goldstein JL, Anderson RGW, Brown MS. Coated pits, coated vesicles, and receptor-mediated endocytosis. Nature 1979; 279: 679–685. 10.1038/279679a0 CASPubMedWeb of Science®Google Scholar 59 van Deurs B, Nilausen K, Faergeman O, et al. Coated pits and pinocytosis of cationized ferritin in human skin fibroblasts. Eur J Cell Biol 1982; 27: 270–278. CASPubMedWeb of Science®Google Scholar 60 Kanaseki T, Kadota K. The "vesicle in a basket": a morphological study of the coated vesicle isolated from the nerve endings of the guinea pig brain, with special reference to the mechanism of membrane movements. J Cell Biol 1969; 42: 202–220. 10.1083/jcb.42.1.202 CASPubMedWeb of Science®Google Scholar 61 Crowther RA, Pearse BMF. Assembly and packing of clathrin into coats. J Cell Biol 1981; 91: 790–797. 10.1083/jcb.91.3.790 CASPubMedWeb of Science®Google Scholar 62 Pearse BMF, Crowther RA. Packing of clathrin into coats. Cold Spring Harbor Symposia on Quantitative Biol 1982; 46: 703–706. 10.1101/SQB.1982.046.01.066 PubMedWeb of Science®Google Scholar 63 Heuser J. Three-dimensional visualization of coated vesicle formation in fibroblasts. J Cell Biol 1980; 84: 560–583. 10.1083/jcb.84.3.560 CASPubMedWeb of Science®Google Scholar 64 Anderson RGW, Brown MS, Goldstein JL. Role of the coated endocytic vesicle in the uptake of receptor-bound low density lipoprotein in human fibroblasts. Cell 1977; 10: 351–364. 10.1016/0092-8674(77)90022-8 CASPubMedWeb of Science®Google Scholar 65 Goldstein B, Wofsy C. Analysis of coated pit recycling on human fibroblasts. Cell Biophys 1981; 3: 251–277. 10.1007/BF02782627 CASPubMedWeb of Science®Google Scholar 66 Patzer EJ, Schlossman DM, Rothman JE. Release of clathrin from coated vesicles dependent upon a nucleoside triphosphate and a cytosol fraction. J Cell Biol 1982; 93: 230–236. 10.1083/jcb.93.1.230 CASPubMedWeb of Science®Google Scholar 67 Willingham MC, Rutherford AV, Gallo MG, et al. Receptor-mediated endocytosis in cultured fibroblasts: cryptic coated pits and the formation of receptosomes. J Histochem Cytochem 1981; 29: 1003–1013. 10.1177/29.9.6169759 CASPubMedWeb of Science®Google Scholar 68 Pastan IH, Willingham MC. Journey to the center of the cell: role of the receptosome. Science 1981; 214: 504–509. 10.1126/science.6170111 CASPubMedWeb of Science®Google Scholar 69 Willingham MC, Pastan I. The receptosome: an intermediate organelle of receptor-mediated endocytosis in cultured fibroblasts. Cell 1980; 21: 67–77. 10.1016/0092-8674(80)90115-4 CASPubMedWeb of Science®Google Scholar 70 Fan JY, Carpentier J-L, Gorden P, et al. Receptor-mediated endocytosis of insulin: role of microvilli, coated pits, and coated vesicles. Proc Natl Acad Sci USA 1982; 79: 7788–7791. 10.1073/pnas.79.24.7788 CASPubMedWeb of Science®Google Scholar 71 Petersen OW, van Deurs B. Serial-section analysis of coated pits and vesicles involved in adsorptive pinocytosis in cultured fibroblasts. J Cell Biol 1983; 96: 277–281. 10.1083/jcb.96.1.277 CASPubMedWeb of Science®Google Scholar 72 Rodewald R. Intestinal transport of antibodies in the newborn rat. J Cell Biol 1973; 58: 198–211. 10.1083/jcb.58.1.189 CASWeb of Science®Google Scholar 73 King BF. The role of coated vesicles in selective transfer across yolk sac epithelium. J Ultrastruct Res 1982; 79: 273–284. 10.1016/S0022-5320(82)90003-X CASPubMedWeb of Science®Google Scholar 74 Wild AE. Mechanism of protein transport across the rabbit yolk sac endoderm. In: WA Hemmings, ed. Maternofoetal transmission of immunoglobulins. Cambridge, England: Cambridge University Press, 1976; 155–167. Google Scholar 75 Harford J, Ashwell GG. Immunological evidence for the transmembrane nature of the rat liver receptor for asialglycoproteins. Proc Natl Acad Sci USA 1981; 78: 1557–1561. 10.1073/pnas.78.3.1557 CASPubMedWeb of Science®Google Scholar 76 Drickamer K, Mamon JF. Phosphorylation of a membrane receptor for glycoproteins: possible transmembrane orientation of the chicken hepatic lectin. J Biol Chem 1982; 257: 15156–15161. CASPubMedWeb of Science®Google Scholar 77 Roth TF, Woods JW. Fundamental questions in receptor-mediated endocytosis. In: VT Marchesi, P Majerus, RC Gallo, eds. Differentiation and function of hematopoietic cell surfaces. New York: Alan R. Liss, Inc., 1982: 163–181. Google Scholar 78 Dickson RB, Willingham MC, Pastan I. α2-macroglobulin adsorbed to colloidal gold: a new probe in the study of receptor-mediated endocytosis. J Cell Biol 1981; 89: 29–34. 10.1083/jcb.89.1.29 CASPubMedWeb of Science®Google Scholar 79 Anderson RGW, Vasile E, Mello RJ, et al. Immunocytochemical visualization of coated pits and vesicles in human fibroblasts: relation to low density lipoprotein receptor distribution. Cell 1978; 15: 919–933. 10.1016/0092-8674(78)90276-3 CASPubMedWeb of Science®Google Scholar 80 Franke WW, Lüder MR, Kartenbeck J, et al. Involvement of vesicle coat material in casein secretion and surface regeneration. J Cell Biol 1976; 69: 173–195. 10.1083/jcb.69.1.173 CASPubMedWeb of Science®Google Scholar 81 Aggeler J, Werb Z. Initial events during phagocytosis by macrophages viewed from outside and inside the cell: membrane-particle interactions and clathrin. J Cell Biol 1982; 94: 613–623. 10.1083/jcb.94.3.613 CASPubMedWeb of Science®Google Scholar 82 Griffin FM, Jr, Griffin JA, Leider JE, et al. Studies on the mechanism of phagocytosis. I. Requirements for circumferential attachment of particle-bound ligands to specific receptors on the macrophage plasma membrane. J Exp Med 1975; 142: 1263–1282. 10.1084/jem.142.5.1263 PubMedWeb of Science®Google Scholar 83 Griffin FM, Jr, Griffin JA, Silverstein SC. Studies on the mechanism of phagocytosis. II. The interaction of macrophages with anti-immunoglobulin IgG-coated bone marrow-derived lymphocytes. J Exp Med 1976; 144: 788–809. 10.1084/jem.144.3.788 PubMedWeb of Science®Google Scholar 84 Bloom WS, Fields KL, Yen SH, et al. Brain clathrin: immunoflu-orescent patterns in cultured cells and tissues. Proc Natl Acad Sci USA 1980; 77: 5520–5524. 10.1073/pnas.77.9.5520 CASPubMedWeb of Science®Google Scholar 85 Wehland J, Willingham MC, Dickson R, et al. Microinjection of anticlathrin antibodies into fibroblasts does not interfere with the receptor-mediated endocytosis of α2-macroglobulin. Cell 1981; 25: 105–119. 10.1016/0092-8674(81)90235-X CASPubMedWeb of Science®Google Scholar 86 Wehland J, Willingham MC, Gallo MG, et al. Microinjection of anticlathrin antibodies into cultured fibroblasts: clathrin-coated structures in receptor-mediated endocytosis and in exocytosis. Cold Spring Harbor Symposia on Quantitative Biol 1982; 46: 743–753. 10.1101/SQB.1982.046.01.071 Web of Science®Google Scholar 87 Willingham MC, Keen JH, Pastan IH. Ultrastructural immunocytochemical localization of clathrin in cultured fibroblasts. Exp Cell Res 1981; 132: 329–338. 10.1016/0014-4827(81)90108-7 CASPubMedWeb of Science®Google Scholar 88 Cheng TP-O, Byrd FI, Whitaker JN, et al. Immunocytochemical localization of coated vesicle protein in rodent nervous system. J Cell Biol 1980; 86: 624–633. 10.1083/jcb.86.2.624 CASPubMedWeb of Science®Google Scholar 89 Lin C-T, Garbern J, Wu J-Y. Light and electron microscopic immunocytochemical localization of clathrin in rat cerebellum and kidney. J Histochem Cytochem 1982; 30: 853–863. 10.1177/30.9.6813371 CASPubMedWeb of Science®Google Scholar 90 Kartenbeck J, Schmid E, Miiller H, et al. Immunological identification and localization of clathrin and coated vesicles in cultured cells and in tissues. Exp Cell Res 1981; 133: 191–211. 10.1016/0014-4827(81)90369-4 CASPubMedWeb of Science®Google Scholar 91 Croze EM, Morre DJ, Morré DM, et al. Distribution of clathrin and spiny-coated vesicles on membranes within mature Golgi apparatus elements of mouse liver. Eur J Cell Biol 1982; 28: 130–138. CASPubMedWeb of Science®Google Scholar 92 Friend DS, Farquhar MG. Functions of coated vesicles during protein absorption in the rat vas deferens. J Cell Biol 1967; 35: 357–376. 10.1083/jcb.35.2.357 PubMedWeb of Science®Google Scholar 93 Pelletier G, Peillon F, Vila-Porcile E. An ultrastructural study of sites of granule extrusion in the anterior pituitary of the rat. Zeitschrift fiir Zellforschung und Mikroskopische Anatomie 1971; 115: 501–507. 10.1007/BF00335716 CASPubMedWeb of Science®Google Scholar 94 Higgins SJ, Burchell JM, Mainwaring WIP. Androgen dependent synthesis of basic secretory proteins by the rat seminal vesicle. Biochem J 1976; 158: 271–282. 10.1042/bj1580271 CASPubMedWeb of Science®Google Scholar 95 Kartenbeck J, Franke WW, Morré DJ. Polygonal structures on secretory vesicles of rat hepatocytes. Cytobiologie 1977; 14: 284–291. Web of Science®Google Scholar 96 Ehrenreich JH, Bergeron JJM, Siekevitz P, et al. Golgi fractions prepared from rat liver homogenates. I. Isolation procedure and morphological characterization. J Cell Biol 1973; 59: 45–72. 10.1083/jcb.59.1.45 CASPubMedWeb of Science®Google Scholar 97 Palade GE. Intracellular aspects of the process of protein synthesis. Science 1975; 189: 347–358. 10.1126/science.1096303 CASPubMedWeb of Science®Google Scholar 98 Jamieson JD. Intracellular transport and discharge of secretory proteins: present status and future perspectives. In: SC Silverstein, ed. Transport of macromolecules in cellular systems. Berlin: Dahlem Konferenzen, 1978: 273–288. Google Scholar 99 Rothman JE, Fine RE. Coated vesicles transport newly synthe-sized membrane glycoproteins from endoplasmic reticulum to plasma membrane in two successive stages. Proc Natl Acad Sci USA 1980; 77: 780–784. 10.1073/pnas.77.2.780 CASPubMedWeb of Science®Google Scholar 100 Bergmann J, Tokuyasu K, Singer SJ. Passage of an integral membrane protein, the vesicular somatitis virus glycoprotein, through the Golgi apparatus en route to the plasma membrane. Proc Natl Acad Sci USA 1981; 78: 1746–1750. 10.1073/pnas.78.3.1746 CASPubMedWeb of Science®Google Scholar 101 Rothman JE, Bursztyn-Pettegrew H, Fine RE. Transport of the membrane glycoprotein of vesicular stomatitis virus to the cell surface in two stages by clathrin-coated vesicles. J Cell Biol 1980; 86: 162–171. 10.1083/jcb.86.1.162 CASPubMedWeb of Science®Google Scholar 102 Rothman JE, Fries E, Dunphy WG, et al. The Golgi apparatus, coated vesicles, and the sorting problem. Cold Spring Harbor Symposia on Quantitative Biol 1982; 46: 797–805. 10.1101/SQB.1982.046.01.075 Web of Science®Google Scholar 103 Kramer MF, Geuze JJ. Redundant cell-membrane regulation in the exocrine pancreas cells after pilocarpine stimulation of the secretion. In: B Caccarelli, F Clementi, J Moldesi, eds. Advances in Cytopharmacology, Vol 2. New York: Raven Press, 1974: 87–98. Google Scholar 104 Grynszpan-Winograd O. Morphological aspects of exocytosis in the renal medulla. Phil Trans Roy Soc Lond Ser B 1971; 261: 291–298. 10.1098/rstb.1971.0058 CASPubMedWeb of Science®Google Scholar 105 Ockleford CD, Whyte A. Differentiated regions of human placental cell surface associated with exchange of materials between maternal and foetal blood: coated vesicles. J Cell Sci 1977; 25: 293–312. CASPubMedWeb of Science®Google Scholar 106 Heuser JE, Reese TS. Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J Cell Biol 1973; 57: 315–344. 10.1083/jcb.57.2.315 CASPubMedWeb of Science®Google Scholar 107 Bittner GD, Kennedy D. Quantitative aspects of transmitter release. J Cell Biol 1970; 47: 585–592. 10.1083/jcb.47.3.585 CASPubMedWeb of Science®Google Scholar 108 Koenig HL, Giamberardino LD, Bennett G. Renewal of proteins and glycoproteins of synaptic constituents by means of axonal transport. Brain Res 1973; 62: 413–417. 10.1016/0006-8993(73)90704-X CASPubMedWeb of Science®Google Scholar 109 Heuser JE. Morphology of synaptic vesicle discharge and reformation at the frog neuromuscular junction. In: S Thesleff, ed. Motor innervation of muscle. New York: Academic Press, 1976: 51–115. Google Scholar 110 Dreifuss J J, Akert K, Sandri C, et al. The fine structure of freeze-fractured neurosecretory nerve endings in the neurohypophysis. Brain Res 1973; 62: 367–372. 10.1016/0006-8993(73)90698-7 CASPubMedWeb of Science®Google Scholar 111 Blitz AL, Fine RE. Coated vesicles in neurons. In: CD Ockleford, A Whyte, eds. Coated vesicles. Cambridge, England: Cambridge University Press, 1980: 103–134. 10.1017/CBO9780511735509.007 Google Scholar 112 Pearse BMF. Coated vesicles from pig brain: purification and biochemical characterization. J Molec Biol 1975; 97: 93–98. 10.1016/S0022-2836(75)80024-6 CASPubMedWeb of Science®Google Scholar 113 Schjeide OA, San Lin RI, Grellert EA, et al. Isolation and preliminary chemical analysis of coated vesicles from chicken oocytes. Physiol Chem Phys 1969; 1: 141–163. CASWeb of Science®Google Scholar 114 Pearse BMF. Coated vesicles from human placenta carry ferritin, transferrin, and immunoglobulin G. Proc Natl Acad Sci USA 1982; 79: 451–455. 10.1073/pnas.79.2.451 CASPubMedWeb of Science®Google Scholar 115 Woods JW, Woodward MP, Roth TF. Common features of coated vesicles from dissimilar tissues: composition and structure. J Cell Sci 1978; 30: 87–97. 10.1242/jcs.30.1.87 CASPubMedWeb of Science®Google Scholar 116 Crowther RA, Finch JT, Pearse BMF. On the structure of coated vesicles. J Molec Biol 1976; 103: 785–798. 10.1016/0022-2836(76)90209-6 CASPubMedWeb of Science®Google Scholar 117 Garbern JY, Wu J-Y. Purification and characterization of clathrin from bovine brain. J Neurochem 1981; 36: 602–612. 10.1111/j.1471-4159.1981.tb01633.x CASPubMedWeb of Science®Google Scholar 118 Merisko EM, Farquhar MG, Palade GE. Coated vesicle isolation by immunoadsorption on Staphylococcus aureus cells. J Cell Biol 1982; 92: 846–857. 10.1083/jcb.92.3.846 CASPubMedWeb of Science®Google Scholar 119 Steer CJ, Klausner RD, Blumenthal R. Interaction of liver clathrin coat protein with lipid model membranes. J Biol Chem 1982; 257: 8533–8540. CASPubMedWeb of Science®Google Scholar 120 Pearse BMF. Clathrin: a unique protein associated with intracellular transfer of membrane by coated vesicles. Proc Natl Acad Sci USA 1976; 73: 1255–1259. 10.1073/pnas.73.4.1255 CASPubMedWeb of Science®Google Scholar 121 Brodsky FM, Parham P. Polymorphism in clathrin light chains from different tissues. J Molec Biol 1983 (in press). Google Scholar 122 Nandi PK, Irace G, van Jaarsveld PP, et al. Instability of coated vesicles in concentrated sucrose solutions. Proc Natl Acad Sci USA 1982; 79: 5881–5885. 10.1073/pnas.79.19.5881 CASPubMedWeb of Science®Google Scholar 123 Steven AC, Hainfeld JF, Wall JS, et al. Mass distributions of coated vesicles isolated from liver and brain: analysis by scanning transmission electron microscopy. J Cell Biol 1983 (in press). Google Scholar 124 Mello RJ, Brown MS, Goldstein JL, et al. LDL receptors in coated vesicles isolated from bovine adrenal cortex: binding sites unmasked by detergent treatment. Cell 1980; 20: 829–837. 10.1016/0092-8674(80)90329-3 CASPubMedWeb of Science®Google Scholar 125 Booth AG, Wilson MJ. Human placental coated vesicles contain receptor-bound transferrin. Biochem J 1981; 196: 355–362. 10.1042/bj1960355 CASPubMedWeb of Science®Google Scholar 126 Pilch PF, Shia MA, Benson RJJ, et al. Coated vesicles participate in the receptor-mediated endocytosis of insulin. J Cell Biol 1983; 96: 133–138. 10.1083/jcb.96.1.133 CASPubMedWeb of Science®Google Scholar 127 Fine RE, Goldenberg R, Sorrentino J, et al. Subcellular structures involved in internalization and degradation of epidermal growth factor. J Supramolec Struct Cell Biochem 1981; 15: 235–251. 10.1002/jsscb.1981.380150304 CASPubMedWeb of Science®Google Scholar 128 Campbell CH, Fine RE, Squicciarini J, et al. Coated vesicles from rat liver and calf brain contain cryptic mannose-6-phosphate receptors. J Biol Chem 1983; 258: 2628–2633. CASPubMedWeb of Science®Google Scholar 129 Steer CJ, Wall DA, Ashwell G. Evidence for the presence of the asialoglycoprotein receptor in coated vesicles isolated from rat liver. Hepatology 1983 (in press). Google Scholar 130 Pearse BMF. On the structural and functional components of coated vesicles. J Molec Biol 1978; 126: 803–812. 10.1016/0022-2836(78)90021-9 CASPubMedWeb of Science®Google Scholar 131 Woodward MP, Roth TF. Coated vesicles: characterization, selective dissociation, and reassembly. Proc Natl Acad Sci USA 1978; 75: 4394–4398. 10.1073/pnas.75.9.4394 CASPubMedWeb of Science®Google Scholar 132 Whyte A. Proteins of coated micropinocytic vesicles isolated from human placentae. Biochem Soc Trans 1978; 6: 299–301. 10.1042/bst0060299 CASPubMedGoogle Scholar 133 Blitz AL, Fine RE, Toselli PA. Evidence that coated vesicles isolated from brain are calcium-sequestering organelles resembling sarcoplasmic reticulum. J Cell Biol 1977; 75: 135–147. 10.1083/jcb.75.1.135 CASPubMedWeb of Science®Google Scholar 134 Pfeffer SR, Kelly RB. Identification of minor components of coated vesicles by use of permeation chromatography. J Cell Biol 1981; 91: 385–391. 10.1083/jcb.91.2.385 CASPubMedWeb of Science®Google Scholar 135 Unanue ER, Ungewickell E, Branton D. The binding of clathrin triskelions to membranes from coated vesicles. Cell 1981; 26: 439–446. 10.1016/0092-8674(81)90213-0 CASPubMedWeb of Science®Google Scholar 136 Pauloin A, Bernier I, Jolles P. Presence of cyclic nucleotide-Ca2+ independent protein kinase in bovine brain coated vesicles. Nature 1982; 298: 574–576. 10.1038/298574a0 CASPubMedWeb of Science®Google Scholar 137 Lisanti MP, Schook W, Moskowitz N, et al. Brain clathrin and clathrin-associated proteins. Biochem J 1981; 201: 297–304. 10.1042/bj2010297 PubMedWeb of Science®Google Scholar 138 Rubenstein JLR, Fine RE, Luskey BD, et al. Purification of coated vesicles by agarose gel electrophoresis. J Cell Biol 1981; 89: 357–361. 10.1083/jcb.89.2.357 CASPubMedWeb of Science®Google Scholar 139 Keen JH, Willingham MC, Pastan IH. Clathrin-coated vesicles: isolation, dissociation and factor-dependent reassociation of clathrin baskets. Cell 1979; 16: 303–312. 10.1016/0092-8674(79)90007-2 CASPubMedWeb of Science®Google Scholar 140 Ungewickell E, Branton D. Assembly units of clathrin coats. Nature 1981; 289: 420–422. 10.1038/289420a0 CASPubMedWeb of Science®Google Scholar 141 Kirchhausen T, Harrison SC. Protein organization in clathrin trimers. Cell 1981; 23: 755–761. 10.1016/0092-8674(81)90439-6 CASPubMedWeb of Science®Google Scholar 142 Woodward MP, Roth TF. Influence of buffer ions and divalent cations on coated vesicle disassembly and reassembly. J Supra-molec Struct 1979; 11: 237–250. 10.1002/jss.400110213 CASPubMedWeb of Science®Google Scholar 143 Nandi PK, Pretorius HT, Lippoldt RE, et al. Molecular properties of the reassembled coat protein of coated vesicles. Biochem 1980; 19: 5917–5921. 10.1021/bi00566a039 CASPubMedWeb of Science®Google Scholar 144 Irace G, Lippoldt RE, Edelhoch H, et al. Properties of clathrin coat structures. Biochemistry 1982; 21: 5764–5769. 10.1021/bi00266a006 CASPubMedWeb of Science®Google Scholar 145 Nandi PK, van Jaarsveld PP, Lippoldt RE, et al. Effect of basic compounds on the polymerization of clathrin. Biochemistry 1981; 20: 6706–6710. 10.1021/bi00526a028 CASPubMedWeb of Science®Google Scholar 146 van Jaarsveld PP, Nandi PK, Lippoldt RE, et al. Polymerization of clathrin protomers into basket structures. Biochemistry 1981; 20: 4129–4135. 10.1021/bi00517a028 CASPubMedWeb of Science®Google Scholar 147 van Jaarsveld PP, Lippoldt RE, Nandi PK, et al. Effects of several antimalarials and phenothiazine compounds on the formation of coat structure from clathrin. Biochem Pharm 1982; 31: 793–798. 10.1016/0006-2952(82)90465-8 CASPubMedWeb of Science®Google Scholar 148 Pretorius HT, Nandi PK, Lippoldt RE, et al. Molecular characterization of human clathrin. Biochemistry 1981; 20: 2777–2782. 10.1021/bi00513a011 CASPubMedWeb of Science®Google Scholar 149 Ungewickell E, Unanue ER, Branton D. Functional and structural studies on clathrin triskelions and baskets. Cold Spring Harbor Symposia on Quantitative Biol 1982; 46: 723–731. 10.1101/SQB.1982.046.01.069 PubMedWeb of Science®Google Scholar 150 Vincent JS, Steer CJ, Levin IW. Infrared spectroscopic study of the pH dependent secondary structure of brain clathrin. Biochemistry 1983 (in press). Google Scholar 151 Lisanti MP, Schook W, Moskowitz N, et al. Brain clathrin: studies of its ultrastructural assemblies. Eur J Biochem 1982; 121: 617–622. 10.1111/j.1432-1033.1982.tb05830.x CASPubMedWeb of Science®Google Scholar 152 Schmid SL, Matsumoto AK, Rothman JE. A domain of clathrin that forms coats. Proc Natl Acad Sci USA 1982; 79: 91–95. 10.1073/pnas.79.1.91 CASPubMedWeb of Science®Google Scholar 153 Keen JH, Willingham MC, Pastan I. Clathrin and coated vesicle proteins: immunological characterization. J Biol Chem 1981; 256: 2538–2544. CASPubMedWeb of Science®Google Scholar 154 Lisanti MP, Shapiro LS, Moskowitz N, et al. Isolation and preliminary characterization of clathrin-associated proteins. Eur J Biochem 1982; 125: 463–470. 10.1111/j.1432-1033.1982.tb06706.x CASPubMedWeb of Science®Google Scholar 155 Brodsky FM, Holmes NJ, Parham P. Tropomyosin-like properties of clathrin light chains allow a rapid, high-yield purification. J Cell Biol 1983; 96: 911–914. 10.1083/jcb.96.3.911 CASPubMedWeb of Science®Google Scholar 156 Linden CD. Identification of the coated vesicle proteins that bind calmodulin. Biochem Biophys Res Comm 1982; 109: 186–193. 10.1016/0006-291X(82)91583-2 CASPubMedWeb of Science®Google Scholar 157 Moskowitz N, Schook W, Lisanti M, et al. Calmodulin affinity for brain coated vesicle proteins. J Neurochem 1982; 38: 1742–1747. 10.1111/j.1471-4159.1982.tb06657.x CASPubMedWeb of Science®Google Scholar 158 Moskowitz N, Glassman A, Ores C, et al. Phosphorylation of brain synaptic and coated vesicle proteins by endogenous Ca2+/ calmodulin-and cAMP-dependent protein kinases. J Neurochem 1983; 40: 711–718. 10.1111/j.1471-4159.1983.tb08037.x CASPubMedWeb of Science®Google Scholar 159 Bessis M, Breton Gorius J. Iron particles in normal erythroblasts and normal and pathological erythrocytes. J Biophys Biochem Cytol 1957; 3: 503–505. 10.1083/jcb.3.3.503 CASPubMedWeb of Science®Google Scholar Citing Literature Volume3, Issue31983Pages 437-454 ReferencesRelatedInformation
Referência(s)