Generation of Multiple Stable Dermcidin-Derived Antimicrobial Peptides in Sweat of Different Body Sites
2005; Elsevier BV; Volume: 126; Issue: 2 Linguagem: Inglês
10.1038/sj.jid.5700041
ISSN1523-1747
AutoresSiegbert Rieg, Silke Seeber, Heiko Steffen, Andreas Humeny, Hubert Kalbacher, Stefan Stevanović, Akihiko Kimura, Claus Garbe, Birgit Schittek,
Tópico(s)Pediatric health and respiratory diseases
ResumoAntimicrobial peptides (AMPs) are effector molecules of innate immunity. Dermcidin (DCD), a recently discovered AMP with broad-spectrum activity, is produced constitutively by the eccrine sweat glands and secreted into sweat. In this study, we investigated the proteolytic processing, site-specific expression, and stability of DCD peptides in eccrine sweat. Using surface-enhanced laser desorption ionization time-of-flight mass spectrometry (SELDI-TOF-MS) and reversed-phase high-pressure liquid chromatography analysis, we identified in eccrine sweat 14 proteolytically processed DCD peptides. Semiquantitative SELDI-TOF-MS analysis indicated that processing of DCD-1L is individually different, but generates a few dominant peptides. At body sites with a high probability for contact with pathogenic microorganisms, a high amount of antimicrobial active DCD peptides was detected in sweat. Furthermore, we show that the secretion rate of DCD is constant during a period of prolonged sweating and that DCD peptides are stable in sweat over several hours. Other known AMPs like the human cathelicidin LL-37 and α- or β-defensins were not detected in significant quantity in eccrine sweat. Owing to the durable and abundant presence, DCD-derived peptides contribute to the first line of defense by building a constant barrier that overlies the epithelial skin. Antimicrobial peptides (AMPs) are effector molecules of innate immunity. Dermcidin (DCD), a recently discovered AMP with broad-spectrum activity, is produced constitutively by the eccrine sweat glands and secreted into sweat. In this study, we investigated the proteolytic processing, site-specific expression, and stability of DCD peptides in eccrine sweat. Using surface-enhanced laser desorption ionization time-of-flight mass spectrometry (SELDI-TOF-MS) and reversed-phase high-pressure liquid chromatography analysis, we identified in eccrine sweat 14 proteolytically processed DCD peptides. Semiquantitative SELDI-TOF-MS analysis indicated that processing of DCD-1L is individually different, but generates a few dominant peptides. At body sites with a high probability for contact with pathogenic microorganisms, a high amount of antimicrobial active DCD peptides was detected in sweat. Furthermore, we show that the secretion rate of DCD is constant during a period of prolonged sweating and that DCD peptides are stable in sweat over several hours. Other known AMPs like the human cathelicidin LL-37 and α- or β-defensins were not detected in significant quantity in eccrine sweat. Owing to the durable and abundant presence, DCD-derived peptides contribute to the first line of defense by building a constant barrier that overlies the epithelial skin. antimicrobial peptide Dermcidin reversed-phase high-pressure liquid chromatography surface-enhanced laser desorption ionization time-of-flight mass spectrometry
Referência(s)