Ultrastructural analysis of HNE‐treated Saccharomyces cerevisiae cells reveals fragmentation of the vacuole and an accumulation of lipids in the cytosol
2001; Wiley; Volume: 19; Issue: 1 Linguagem: Inglês
10.1002/cbf.888
ISSN1099-0844
AutoresWillibald Wonisch, G. Zellnig, Sepp D. Kohlwein, Rudolf Jörg Schaur, Tomasz Biliński, Franz Tatzber, H. Esterbauer,
Tópico(s)Plant Reproductive Biology
ResumoCell Biochemistry and FunctionVolume 19, Issue 1 p. 59-64 Communication Ultrastructural analysis of HNE-treated Saccharomyces cerevisiae cells reveals fragmentation of the vacuole and an accumulation of lipids in the cytosol W. Wonisch, W. Wonisch Institute of Biochemistry, Karl-Franzens-University of Graz, Schubertstrasse 1, A-8010 Graz, AustriaSearch for more papers by this authorG. Zellnig, G. Zellnig Institute of Plant Physiology, University of Graz, Schubertstrasse 51, A-8010 Graz, AustriaSearch for more papers by this authorS. D. Kohlwein, S. D. Kohlwein SFB Biomembrane Research Center, Technical University of Graz, Institute of Biochemistry, Petersgasse 12, A-8010 Graz, AustriaSearch for more papers by this authorR. J. Schaur, Corresponding Author R. J. Schaur [email protected] Institute of Biochemistry, Karl-Franzens-University of Graz, Schubertstrasse 1, A-8010 Graz, AustriaInstitute of Biochemistry, University of Graz, Schubertstraße 1, A-8010 Graz, Austria.Search for more papers by this authorT. Bilinski, T. Bilinski Pedagogical University of Rzeszow, Rejtana 16, 35-605 Rzeszow, PolandSearch for more papers by this authorF. Tatzber, F. Tatzber Institute of Nuclear Medicine, University of Vienna, Währingergürtel 18-20, A-1090 Vienna, AustriaSearch for more papers by this authorH. Esterbauer, H. Esterbauer Institute of Biochemistry, Karl-Franzens-University of Graz, Schubertstrasse 1, A-8010 Graz, Austria Professor H. Esterbauer is deceased.Search for more papers by this author W. Wonisch, W. Wonisch Institute of Biochemistry, Karl-Franzens-University of Graz, Schubertstrasse 1, A-8010 Graz, AustriaSearch for more papers by this authorG. Zellnig, G. Zellnig Institute of Plant Physiology, University of Graz, Schubertstrasse 51, A-8010 Graz, AustriaSearch for more papers by this authorS. D. Kohlwein, S. D. Kohlwein SFB Biomembrane Research Center, Technical University of Graz, Institute of Biochemistry, Petersgasse 12, A-8010 Graz, AustriaSearch for more papers by this authorR. J. Schaur, Corresponding Author R. J. Schaur [email protected] Institute of Biochemistry, Karl-Franzens-University of Graz, Schubertstrasse 1, A-8010 Graz, AustriaInstitute of Biochemistry, University of Graz, Schubertstraße 1, A-8010 Graz, Austria.Search for more papers by this authorT. Bilinski, T. Bilinski Pedagogical University of Rzeszow, Rejtana 16, 35-605 Rzeszow, PolandSearch for more papers by this authorF. Tatzber, F. Tatzber Institute of Nuclear Medicine, University of Vienna, Währingergürtel 18-20, A-1090 Vienna, AustriaSearch for more papers by this authorH. Esterbauer, H. Esterbauer Institute of Biochemistry, Karl-Franzens-University of Graz, Schubertstrasse 1, A-8010 Graz, Austria Professor H. Esterbauer is deceased.Search for more papers by this author First published: 12 February 2001 https://doi.org/10.1002/cbf.888Citations: 7 AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat REFERENCES 1 Jamieson DJ. Oxidative stress responses of the yeast Saccharomyces cerevisiaem. Yeast 1998; 14(16): 1511–1527. 10.1002/(SICI)1097-0061(199812)14:16 3.0.CO;2-S CASPubMedWeb of Science®Google Scholar 2 Esterbauer H, Schaur RJ, Zollner H. Chemistry and biochemistry of 4–hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 1991; 11: 81–128. 10.1016/0891-5849(91)90192-6 CASPubMedWeb of Science®Google Scholar 3 Wonisch W, Hayn M, Schaur RJ, et al. Increased stress parameter synthesis in the yeast Saccharomyces cerevisiae after treatment with 4-hydroxy-2-nonenal. FEBS 1997; 405: 11–15. 10.1016/S0014-5793(97)00123-3 CASPubMedWeb of Science®Google Scholar 4 Poot M, Verkerk A, Koster JF, Esterbauer H, Jongkind JF. Influence of cumene hydroperoxide and 4-hydroxynonenal on the glutathione metabolism during in vitro ageing of human skin fibroblasts. Eur J Biochem 1987; 162: 287–291. 10.1111/j.1432-1033.1987.tb10598.x CASPubMedWeb of Science®Google Scholar 5 Darley-Usmar VM, Severn A, O'Leary VJ, Rogers M. Treatment of macrophages with oxidized low-density lipoprotein increases their intracellular glutathione content. Biochem J 1991; 278: 429–434. 10.1042/bj2780429 CASPubMedWeb of Science®Google Scholar 6 Hauptlorenz S, Esterbauer H, Moll W, Pumpel R, Schauenstein E, Puschendorf B. Effect of the lipid peroxidation product 4-hydroxynonenal and related aldehydes on proliferation and viability of cultured Ehrlich ascites tumor cells. Biochem Pharmacol 1985; 34: 3803–3809. 10.1016/0006-2952(85)90428-9 CASPubMedWeb of Science®Google Scholar 7 Poot M, Verkerk A, Koster JF, Esterbauer H, Jognkind JF. Reversible inhibition of DNA and protein synthesis by cumene hydroperoxide and 4-hydroxynonenal. Mech Age Dev 1988; 43: 1–9. 10.1016/0047-6374(88)90093-0 CASPubMedWeb of Science®Google Scholar 8 Wonisch W, Kohlwein SD, Schaur J, et al. Treatment of the budding yeast Saccharomyces cerevisiae with the lipid peroxidation product 4-HNE provokes a temporary cell cycle arrest in G1 phase. Free Radic Biol Med 1998; 25(6): 682–687. 10.1016/S0891-5849(98)00110-5 CASPubMedWeb of Science®Google Scholar 9 Barrera G, Pizzimenti S, Muraca R, et al. Effect of 4-hydroxynonenal on cell cycle progression and expression of differentiation-associated antigens in HL-60 cells. Free Radic Biol Med 1996; 20: 455–462. 10.1016/0891-5849(95)02049-7 CASPubMedWeb of Science®Google Scholar 10 Poot M, Esterbauer H, Rabinovitch PS, Hoehn H. Disturbance of cell proliferation by two model compounds of lipid peroxidation contradicts causative role in proliferative senescence. J Cell Physiol 1988; 137: 421–429. 10.1002/jcp.1041370305 CASPubMedWeb of Science®Google Scholar 11 Esterbauer H, Weger W. The effect of aldehydes on normal and malignant cells. 3rd report: Synthesis of homologous 4-hydroxy-2-alkenals II. Monatsh Chem 1967; 98: 1994–2000. 10.1007/BF01167162 CASWeb of Science®Google Scholar 12 Wonisch W, Schaur RJ, Bilinski T, Esterbauer H. Assessment of growth inhibition by aldehydic lipid peroxidation products and related aldehydes by Saccharomyces cerevisiae. Cell Biochem Funct 1995; 13: 91–98. 10.1002/cbf.290130205 CASPubMedWeb of Science®Google Scholar 13 Gomes de Mesquita DS, Hoopen R, Woldringh CL. Vacuolar segregation to the bud of Saccharomyces cerevisiae: an analysis of morphology and timing in the cell cycle. J Gen Microbiol 1991; 137: 2447–2454. 10.1099/00221287-137-10-2447 CASPubMedGoogle Scholar 14 Duli'c V, Riezman H. Saccharomyces cerevisiae mutants lacking a functional vacuole are defective for aspects of the pheromone response. J Cell Sci 1990; 97: 517–525. CASPubMedWeb of Science®Google Scholar 15 Scott SV, Hefner-Gravink A, Morano KA, Noda T, Ohsumi Y, Klionsky DJ. Cytoplasm-to-vacuole targeting and autophagy employ the same machinery to deliver proteins to the yeast vacuole. Proc Natl Acad Sci USA 1996; 93(22): 12304–12308. 10.1073/pnas.93.22.12304 CASPubMedWeb of Science®Google Scholar 16 Castrol CD, Koretsky AP, Domach MM. NMR-observed phosphate trafficking and polyphosphate dynamics in wild-type and vph1-1 mutant Saccharomyces cerevisiae in response to stress. Biotechnol Prog 1999; 15(1): 65–73. 10.1021/bp9800743 CASPubMedWeb of Science®Google Scholar 17 Corson LB, Folmer J, Strain JJ, Culotta VC, Cleveland DW. Oxidative stress and iron are implicated in fragmenting vacuoles of Saccharomyces cerevisiae lacking Cu,Zn-superoxide dismutase. J Biol Chem 1999; 274: 27590–27596. 10.1074/jbc.274.39.27590 CASPubMedWeb of Science®Google Scholar 18 Mehdi K, Penninckx MJ. An important role for glutathione and gamma-glutamyltranspeptidase in the supply of growth requirements during nitrogen starvation of the yeast Saccharomyces cerevisiae. Microbiology 1997; 143: 1885–1889. 10.1099/00221287-143-6-1885 CASPubMedWeb of Science®Google Scholar 19 De-Araujo PS. The role of trehalose in cell stress. Braz J Med Biol Res 1996; 29(7): 873–875. CASPubMedWeb of Science®Google Scholar Citing Literature Volume19, Issue1March 2001Pages 59-64 ReferencesRelatedInformation
Referência(s)