Artigo Acesso aberto Revisado por pares

Multi-agent system for knowledge-based event recognition and composition

2011; Wiley; Linguagem: Inglês

10.1111/j.1468-0394.2010.00578.x

ISSN

1468-0394

Autores

Angel Rivas Casado, Rafael Martínez‐Tomás, Antonio Fernández‐Caballero,

Tópico(s)

Robotics and Sensor-Based Localization

Resumo

Expert SystemsVolume 28, Issue 5 p. 488-501 Original Article Multi-agent system for knowledge-based event recognition and composition Angel Rivas Casado, Angel Rivas Casado [email protected] Dpto. Inteligencia Artificial. Escuela Técnica Superior de Ingeniería Informática, Universidad Nacional de Educación a Distancia, Juan del Rosal 16, 28040 Madrid, SpainSearch for more papers by this authorRafael Martinez-Tomás, Rafael Martinez-Tomás Dpto. Inteligencia Artificial. Escuela Técnica Superior de Ingeniería Informática, Universidad Nacional de Educación a Distancia, Juan del Rosal 16, 28040 Madrid, SpainSearch for more papers by this authorAntonio Fernández-Caballero, Antonio Fernández-Caballero Dpto. Sistemas Informáticos, Escuela Técnica Superior de Ingeniería Informática, Universidad de Castilla-La Mancha, Albacete, SpainSearch for more papers by this author Angel Rivas Casado, Angel Rivas Casado [email protected] Dpto. Inteligencia Artificial. Escuela Técnica Superior de Ingeniería Informática, Universidad Nacional de Educación a Distancia, Juan del Rosal 16, 28040 Madrid, SpainSearch for more papers by this authorRafael Martinez-Tomás, Rafael Martinez-Tomás Dpto. Inteligencia Artificial. Escuela Técnica Superior de Ingeniería Informática, Universidad Nacional de Educación a Distancia, Juan del Rosal 16, 28040 Madrid, SpainSearch for more papers by this authorAntonio Fernández-Caballero, Antonio Fernández-Caballero Dpto. Sistemas Informáticos, Escuela Técnica Superior de Ingeniería Informática, Universidad de Castilla-La Mancha, Albacete, SpainSearch for more papers by this author First published: 07 December 2011 https://doi.org/10.1111/j.1468-0394.2011.00578.xCitations: 12Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract This work presents a multi-agent system for knowledge-based high-level event composition, which interprets activities, behaviour and situations semantically in a scenario with multi-sensory monitoring. A perception agent (plurisensory agent and visual agent)-based structure is presented. The agents process the sensor information and identify (agent decision system) significant changes in the monitored signals, which they send as simple events to the composition agent that searches for and identifies pre-defined patterns as higher-level semantic composed events. The structure has a methodology and a set of tools that facilitate its development and application to different fields without having to start from scratch. This creates an environment to develop knowledge-based systems generally for event composition. The application task of our work is surveillance, and event composition/inference examples are shown which characterize an alarming situation in the scene and resolve identification and tracking problems of people in the scenario being monitored. References Abreu, B., L. Botelho, A. Cavallaro, D. Douxchamps, T. Ebrahimi, P. Figueiredo, B. Macq, B. Mory, L. Nunes, J. Orri, M. Trigueiros and A. Violante. (2000) A video-based multiagent traffic surveillance system, in The IEEE Intelligent Vehicles Symposium 45-462. Bobick, A. (1997) Movement, activity, and action: the role of knowledge in the perception of motion, Royal Society Workshop on Knowledge-based Vision in Man and Machine, London, pp. 1257–1265. Carmona, E.J. (2009) On the effect of feedback in multilevel representation spaces, Neurocomputing, 72, 916–927. Castanedo, F., J. García, M.A. Patricio and J.M. Molina (2008) A multiagent architecture to support active fusion in a visual sensor network, in 2nd ACM/IEE International Conference on Distributed Smart Cameras, Stanford University, CA, USA, pp. 1–8. Chleq, N. and M. Thonnat (1996) Realtime image sequence interpretation for video-surveillance applications, IEEE International Conference On Image Processing (ICIP'96), Laussane, pp. 800–804. Folgado, E., M. Rincón, E.J. Carmona and M. Bachiller (2007) A block-based model for monitoring of human activity, Technical Report AVISA-12-07. Fuentes, L.M. and S.A. Velastin (2004) Vigilancia avanzada: del tracking a la detección de sucesos, IEEE América Latina, 2, 206–211. Haesevoets, R., B. Van Eylen, D. Weyns, A. Helleboogh and T. Holvoet (2007) Context-driven dynamic organizations applied to coordinated monitoring of traffic jams, Engineering Environment-Mediated Multiagent Systems, Dresden, Germany, 1–5 October, 2007, D. Weyns, S. Brueckner and Y. Demazeau (eds.), pp. 126–143. Levine, M.D., P.B. Nobel and Y.M. Youssef (1983) A rule-based system for characterizing blood cell motion, in Image Sequence Processing and Dynamic Scene Analysis, T.S. Huang (ed.), Berlin, Germany: Springer-Verlag, 663–709. Martínez-Tomás, R., M. Rincón-Zamorano, M. Bachiller-Mayoral and J. Mira-Mira (2008) On the correspondence between objects and events for the diagnosis of situations in visual surveillance tasks, Pattern Recognition Letters, 29, 1117–1135. Martinez Tomás, R. and A. Rivas Casado (2009) Knowledge and event-based system for video-surveillance tasks, in Proceedings of the 3rd International Work-Conference on the Interplay Between Natural and Artificial Computation (IWINAC): Part I: Bioinspired Applications in Artificial and Natural Computation, ISBN:978-3-642-02263-0, J. Mira, J. M. Ferrández, J.-R. A. Sanchez (eds.), Berlin: Springer-Verlag, 386–394. Molina, J.M., J. García, F.J. Jiménez and J.R. Casar (2004) Fuzzy reasoning in a multiagent system of surveillance sensors to manage cooperatively the sensor-to-task assignment problem, Applied Artificial Intelligence, 18, 673–711. Neumann, B. (1984) Natural language description of time-varying scenes. Brericht no. 105, FBI-HH-B-105/84, Fachberic Informatik, University of Hamburg. Neumann, B. and H. Novak (1983) Events models for recognition and natural language description of events in real-world image sequences, Proceedings of the Eighth IJCAI, Karlsruhe, Morgan Kaufmann, San Mateo, California, pp. 724–726. Pavón, J., J.J. Gómez-Sanz, A. Fernández-Caballero and J.J. Valencia-Jiménez (2007) Development of intelligent multi-sensor surveillance systems with agents, Robotics and Autonomous Systems, 55, 892–903. Remagnino, P., A.I. Shihab and G.A. Jones (2004) Distributed intelligence for multicamera visual surveillance, Pattern Recognition, 37, 675–689. Rota, N.A. and M. Thonnat (2000) Video sequence interpretation for visual surveillance, in IEEE International Workshop on Visual Surveillance (VS'00), Dublin, Ireland, pp. 59–68. Russell, S. and P. Norvig (2009) Artificial Intelligence: A Modern Approach, 3rd edn, Pearson: Prentice Hall. Tostsos, J.K., J. Mylopoulos, H.D. Corvey and S.W. Zucker (1980) A framework for visual motion understanding, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2, 563–573. Z. Zhu and T.S. Huang (eds), (2007) Multimodal Surveillance: Sensors, Algorithms and Systems, Artech House Publishers. Citing Literature Volume28, Issue5November 2011Pages 488-501 ReferencesRelatedInformation

Referência(s)