Mechanisms of flood tolerance in plants
1994; Thieme Medical Publishers (Germany); Volume: 43; Issue: 4 Linguagem: Inglês
10.1111/j.1438-8677.1994.tb00756.x
ISSN1365-2001
AutoresW. Armstrong, Roland Brändle, Michael B. Jackson,
Tópico(s)Plant Water Relations and Carbon Dynamics
ResumoActa Botanica NeerlandicaVolume 43, Issue 4 p. 307-358 Mechanisms of flood tolerance in plants W. ARMSTRONG, W. ARMSTRONG Department of Applied Biology, University of Hull, Hull HU6 7RX, UKSearch for more papers by this authorR. BRÄNDLE, R. BRÄNDLE Botanical Institute, University of Bern, Altenbergrain 21, CH-3013 Bern, SwitzerlandSearch for more papers by this authorM. B. JACKSON, M. B. JACKSON Department of Agricultural Sciences, University of Bristol, Institute of Arable Crops Research, Long Ashton Research Station, Bristol BS18 9AF, UKSearch for more papers by this author W. ARMSTRONG, W. ARMSTRONG Department of Applied Biology, University of Hull, Hull HU6 7RX, UKSearch for more papers by this authorR. BRÄNDLE, R. BRÄNDLE Botanical Institute, University of Bern, Altenbergrain 21, CH-3013 Bern, SwitzerlandSearch for more papers by this authorM. B. JACKSON, M. B. JACKSON Department of Agricultural Sciences, University of Bristol, Institute of Arable Crops Research, Long Ashton Research Station, Bristol BS18 9AF, UKSearch for more papers by this author First published: December 1994 https://doi.org/10.1111/j.1438-8677.1994.tb00756.xCitations: 373AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat References Alani, A., Bruzau, F., Raymond, P., Saint-Ges, V., Leblanc J.M. & Pradet, A. (1985): Germination, respiration and adenylate energy charge of seeds at various oxygen partial pressures. Pl. Physiol. 79: 885–890. CASGoogle Scholar Albrecht, G. & Wiedenroth, E.-M. (1994): Protection against activated oxygen following re-aeration of hypoxically pretreated wheat roots. The response of the glutathione system. J. Exp. Bot. 45: 449–455. 10.1093/jxb/45.4.449 CASWeb of Science®Google Scholar Appleby, C.A., Bogusz, D., Dennis, E.S. & Peacock, W.J. (1988): A role for haemoglobin in all plant roots. Pl. Cell & Env. 11: 359–367. 10.1111/j.1365-3040.1988.tb01360.x CASWeb of Science®Google Scholar Armstrong, J. 1992: Pathways and mechanisms of aeration in Phragmites australis. Ph.D Thesis, University of Hull, England. 253 pages. Google Scholar Armstrong, J. & Armstrong, W. (1988): Phragmites australis—a preliminary study of soil oxidizing sites and internal gas transport pathways. New Phytol. 108: 373–382. 10.1111/j.1469-8137.1988.tb04177.x Web of Science®Google Scholar Armstrong, J. & Armstrong, W. (1990): Light enhanced convective throughflow increases oxygenation in rhizomes and rhizosphere of Phragmites australis (Cav.) Trin. ex Steud. New Phytol. 114: 121–128. 10.1111/j.1469-8137.1990.tb00382.x Web of Science®Google Scholar Armstrong, J. & Armstrong, W. (1994): A physical model involving Nuclepore membranes to investigate the mechanism of humidity-induced convection in Phragmites australis. Proc. Roy. Soc. Edinb. 102B: 529–540. Google Scholar Armstrong, J. & Armstrong, W. (1994): Phytotoxins, callus development and impaired internal aeration: a critical link in die-back of Phragmites australis. In: W.H. Putten (ed.). Reednews 3: 6–23.Reports of EC project EV5V-CT92-0083 (EUREED). Netherlands Institute of Ecology, Heteren. Google Scholar Armstrong, J., Armstrong, W. & Beckett, P.M. (1988): Phragmites australia. A critical appraisal of the ventilating pressure concept and an analysis of resistance to pressurised gas-flow and gaseous diffusion in horizontal rhizomes. New Phytol. 110: 383–390. 10.1111/j.1469-8137.1988.tb00276.x Web of Science®Google Scholar Armstrong, J., Armstrong, W. & Beckett, P.M. (1992): Phragmites australis: Venturi- and humidity-induced pressure flows enhance rhizome aeration and rhizosphere oxidation. New Phytol. 120: 197–207. 10.1111/j.1469-8137.1992.tb05655.x Web of Science®Google Scholar Armstrong, W. (1968): Oxygen diffusion from the roots of woody species. Physiol. Plant. 21: 539–543. 10.1111/j.1399-3054.1968.tb07279.x Web of Science®Google Scholar Armstrong, W. (1979): Aeration in higher plants. In: H.W.W. Woodhouse (ed) Advances in Botanical Research, Vol. 7, 225–332. Academic Press, London. Google Scholar Armstrong, W. (1982): Waterlogged Soils. In: J.R. Etherighton (ed.) Environment and Plant Ecology. 290–330. John Wiley and Sons, Chichester. Google Scholar Armstrong, W. (1994): Polarographic oxygen electrodes and their use in plant aeration studies. Proc. Roy. Soc. Edinb. 102B: 511–528. Google Scholar Armstrong, W. & Boatman, D.J. (1967): Some field observations relating the growth of bog plants to conditions of soil aeration. J. Ecol. 55: 101–110. 10.2307/2257719 Web of Science®Google Scholar Armstrong, W. & Beckett, P.M. (1987): Internal aeration and the development of stelar anoxia in submerged roots: A multishelled mathematical model combining axial diffusion of oxygen in the cortex with radial losses to the stele, the wall layers and the rhizosphere. New Phytol. 105: 221–245. 10.1111/j.1469-8137.1987.tb00860.x Web of Science®Google Scholar Armstrong, W. & Gaynard, T.J. (1976): The critical oxygen pressures for respiration in intact plants. Physiol. Plant. 37: 200–206. 10.1111/j.1399-3054.1976.tb03958.x CASPubMedWeb of Science®Google Scholar Armstrong, W. & Webb, T. (1985): A critical oxygen pressure for root extension in rice. J. Exp. Bot. 36: 1573–1582. 10.1093/jxb/36.10.1573 Web of Science®Google Scholar Armstrong, W., Armstrong, J. & Beckett, P.M. (1990): Measurement and modelling of oxygen release from roots of Phragmites australis. In: P.F. Cooper & B.C. Findlater (eds) The Use of Constructed Wetlands in Water Pollution Control. 41–51. Pergamon Press, Oxford. 10.1016/B978-0-08-040784-5.50009-7 Web of Science®Google Scholar Armstrong, W., Armstrong, J., Beckett, P.M. & Justin, S.H.F.W. (1991a): Convective gas-flows in wetland plant aeration. In: M.B. Jackson, D.D. Davies & H. Lambers (eds) Plant Life under Oxygen Stress. 283–302. SPB Academic Publishing bv, The Hague, The Netherlands. Google Scholar Armstrong, W., Beckett, P.M., Justin, S.H.F.W. & Lythe, S. (1991b): Modelling, and other aspects of root aeration by diffusion. In: M.B. Jackson, D.D. Davies & H. Lambers (eds) Plant Life under Oxygen Stress. 267–282. SPB Academic Publishing bv, The Hague, The Netherlands. Google Scholar Armstrong, W., Healy, M.T. & Lythe, S. (1983): Oxygen diffusion in pea. II. The oxygen status of the primary root as affected by growth, the production of laterals and radial oxygen loss. New Phytol. 94: 549–559. 10.1111/j.1469-8137.1983.tb04864.x Web of Science®Google Scholar Armstrong, W., Healy, M.T. & Webb, T. (1982): Oxygen diffusion in pea. I. Pore-space resistance in the primary root. New Phytol. 91: 647–659. 10.1111/j.1469-8137.1982.tb03344.x Web of Science®Google Scholar Armstrong, W., Justin, S.H.F.W., Beckett, P.M. & Lythe, S. (1991c): Root adaptation to soil waterlogging. Aquatic Bot. 39: 57–73. 10.1016/0304-3770(91)90022-W Web of Science®Google Scholar Armstrong, W., Wright, E., Lythe, S. & Gaynard, T.J. (1985): Plant zonation and the effects of the spring-neap tidal cycle on soil aeration in a Humber salt-marsh. J. Ecol. 73: 323–339. 10.2307/2259786 Web of Science®Google Scholar Armstrong, W., Strange, M., Cringle, S. & Beckett, P.M. (1994): Microelectrode and modelling study of oxygen distribution in roots. Ann. Bot. 74: 287–299. 10.1006/anbo.1994.1120 Web of Science®Google Scholar Attwood, P.A. (1993): Tolerance and growth of willow (Salix viminalis) and willow mycorrhiza in oxygen deficient environments. Ph.D. Thesis, University of Bristol, UK. Google Scholar Atwell, B.J. & Steer, B.T. (1990): The effect of oxygen deficiency on uptake and distribution of nutrients in maize plants. Plant & Soil 122: 1–8. 10.1007/BF02851904 CASWeb of Science®Google Scholar Atwell, B.J., Drew, M.C. & Jackson, M.B. (1988): The influence of oxygen deficiency on ethylene synthesis, 1-aminocyclopropane-1-carboxylic acid levels and aerenchyma formation in roots of Zea mays. Physiol. Plant. 72: 15–22. 10.1111/j.1399-3054.1988.tb06616.x CASWeb of Science®Google Scholar Azuma, T., Mihara, F., Uchida, N., Yasuda, T. & Yamaguchi, T. (1990): Plant hormonal regulation of internodal elongation of floating rice stem sections. Jap. J. Trap. Agric. 34: 271–275. CASGoogle Scholar Baluška, F. (1990): Influence of developing root primordia on nuclei of neighbouring tissues in Zea mays L. primary root. Biologia (Bratislava) 45: 889–898. Web of Science®Google Scholar Baluška, F., Brailsford, R.W., Hauskrecht, M., Jackson, M.B. & Barlow, P.W. (1993): Cellular dimorphism in the maize root cortex: Involvement of microtubules, ethylene and gibberellin in the differentation of cellular behaviour in post-mitotic growth zones. Botanica Acta 106: 394–403. 10.1111/j.1438-8677.1993.tb00766.x CASWeb of Science®Google Scholar Beckett, P.M., Armstrong, W., Justin, S.H.F.W. & Armstrong, J. (1988): On the relative importance of convective and diffusive gas-flows in plant aeration. New Phytol. 110: 463–468. 10.1111/j.1469-8137.1988.tb00283.x Web of Science®Google Scholar Bedford, B.L., Bouldin, D.R. & Beliveau, B.D. (1991): Net oxygen and carbon dioxide balances in solutions bathing roots of wetland plants. J. Ecol. 79: 943–960. 10.2307/2261090 Web of Science®Google Scholar Bekhasut, P., Puckridge, D.W., Wiengweera, A. & Kupkanchanakul, T. (1990): Sequential elongation of internodes of deepwater rice at different water depths. Field Crops Res. 24: 195–209. 10.1016/0378-4290(90)90038-D Web of Science®Google Scholar Bendixen, L.E. & Peterson, M.L. (1962): Tropisms as a basis for tolerance of strawberry clover to flooding conditions. Crop Sci. 2: 223–228. 10.2135/cropsci1962.0011183X000200030014x Google Scholar C.W.P.M. Blom, (ed.) (1990): Adaptations of Plants to Flooding. Aquatic. Bot., Special, Issue Vol. 38 no. 1. 134 pages. Google Scholar Blom, C.W.P.M., Bogemann, G.M., Laan, P., Van Der Sman, A.J.M., Van de Steeg, H.M. & Voesenek, L.A.C.J. (1990): Adaptations to flooding in plants from river areas. Aquatic. Bot. 38: 29–47. 10.1016/0304-3770(90)90097-5 Web of Science®Google Scholar Blom, C.W.P.M., Voesenek, L.A.C.J., Banga, M., Engelaar, W.M.H.G., Rijinders, J.H.G.M., Van de Steeg, H.M. & Visser, E.J.W. (1994). Physiological ecology of riverside species: Adaptative responses of plants to submergence. Ann. Bot. 74: 253–263. 10.1006/anbo.1994.1116 Web of Science®Google Scholar Bowes, G. (1987): Aquatic plant photosynthesis: strategies that enhance carbon gain. In: R.M.M. Crawford (ed.) Plant Life in Aquatic and Amphibious Habitats. British Ecological Society, Special Publication No. 5. 79–98. Blackwell Scientific Publications, Oxford. Google Scholar G. Bowes, (ed.) (1989): Photosynthesis and photo-respiration in aquatic plants. Aquatic Bot., Special Issue, Vol. 34, Nos. 1–3. 299 pages. Google Scholar Bradford, K.J. (1983): Involvement of plant growth substances in the alteration of leaf gas exchange of flooded plants. Pl. Physiol. 73: 480–483. 10.1104/pp.73.2.480 CASPubMedWeb of Science®Google Scholar Bradford, K.J. & Yang, S.F. (1980a): Xylem transport of 1-aminocyclopropane-1-carboxylic acid, an ethylene precursor, in waterlogged tomato plants. Pl. Physiol. 65: 322–326. 10.1104/pp.65.2.322 CASPubMedWeb of Science®Google Scholar Bradford, K.J. & Yang, S.F. (1980b): Stress-induced ethylene production in the ethylene-requiring mutant diageotropica. Pl. Physiol. 65: 322–326. 10.1104/pp.65.2.322 CASPubMedWeb of Science®Google Scholar Bradford, K.J., Hsiao, T.C. & Yang, S.F. (1982): Inhibition of ethylene synthesis in tomato plants subjected to anaerobic root stress. Pl. Physiol. 70: 1503–1507. 10.1104/pp.70.5.1503 CASPubMedWeb of Science®Google Scholar Brändle, R.A. (1991): Flooding resistance in rhizomatous amphibious plants. In: M.B. Jackson, D.D. Davies & H. Lambers (eds) Plant Life under Oxygen Stress. 35–46. SPB Academic Publishing bv, The Hague, The Netherlands. Google Scholar Brändle, R. (1990): Ueberlebensstrategien der Rhizome von Sumpf- und Röhrichtpflanzen. In: H. Sukopp & M. Krauss (eds) Oekologie, Gefährdung und Schutz von Röhrichtphflanzen. 103–120. TU, Berlin. Google Scholar Brändle, R. & Crawford, R.M.M. (1987): Rhizome anoxia tolerance and habitat specialization in wetland plants. In: R.M.M. Crawford (ed.) Plant Life in Aquatic and Amphibious Habitats. 397–410. Blackwell Scientific, Oxford. Google Scholar Brailsford, R.W., Voesenek, L.A.C.J., Smith, A.R., Hall, M.A., Blom, C.W.P.M. & Jackson, M.B. (1993): Enhanced ethylene production by primary roots of Zea mays L. in response to sub-ambient partial pressures of oxygen. Plant, Cell and Environ. 16: 1071–1080. 10.1111/j.1365-3040.1996.tb02064.x CASWeb of Science®Google Scholar Brix, H. (1990): Uptake and photosynthetic utilization of sediment-derived carbon by Phragmites australis (Cav.) Trin. ex Steudel. Aquatic Bot. 38: 377–389. 10.1016/0304-3770(90)90032-G Web of Science®Google Scholar Brix, H., Sorrell, B.K. & Orr, P.T. (1992): Internal pressurization and convective gas flow in some emergent fresh washer macrophytes. Limnol. Oceanogr 37: 1420–1433. 10.4319/lo.1992.37.7.1420 Web of Science®Google Scholar Buchel, H.B. & Grosse, W. (1990): Localization of the porous partition responsible for pressurized gas transport in Alnus glutinosa (L.) Gaertn. Tree Physiol. 6: 247–256. 10.1093/treephys/6.3.247 PubMedWeb of Science®Google Scholar Bucher M., Brändle R. & Kuhlemeir C. (1994): Ethanolic fermentation in transgenic tobacco expressing Zymomonas mobilis pyruvate decarboxylase. EMBO 13: 2756–2763. Google Scholar Buis, K., Van Tongeren, O. & Cappenburg, T.E. (1994): A combined root orientation and diffusion-reaction model for oxygen in the sediment rhizosphere of macrophytes. Applied & Environmental Microbiology (in press). Google Scholar Burdick, D.M. & Mendelssohn, I.A. (1990): Relationship between anatomical and metabolic responses to soil waterlogging in the coastal grass Spartina patens. J. Exp. Bot. 41: 223–228. 10.1093/jxb/41.2.223 CASWeb of Science®Google Scholar Burrows, W.J. & Carr, D.J. (1969): Effects of flooding the root system of sunflower plants on the cytokinin content of the xylem sap. Physiol. Pl. 22: 1105–1112. 10.1111/j.1399-3054.1969.tb09098.x CASPubMedWeb of Science®Google Scholar Campbell, R. & Drew, M.C. (1983): Electron microscopy of gas space (aerenchyma) formation in adventitious roots of Zea mays L. subjected to oxygen shortage. Planta 157: 350–357. 10.1007/BF00397407 CASPubMedWeb of Science®Google Scholar Carr, D.J. & Reid, D.M. (1969): The physiological significance of the synthesis of hormones in roots and of their export to the shoot system. In: F. Wightman & G. Setterfield (eds) Biochemistry and Physiology of Plant Growth Substances. 1169–1185. Runge Press, Ottawa, Canada. Google Scholar Chanton, J.P., Whiting, G.J., Happell, J.D. & Gerard, G. (1993): Contrasting rates and diurnal patterns of methane emission from emergent aquatic macrophytes. Aquatic Bot. 46: 111–128. 10.1016/0304-3770(93)90040-4 CASWeb of Science®Google Scholar Cohen, E. & Kende, H. (1987): In vivo 1-aminocyclopropane-1-carboxylate synthase activity in internodes of deepwater rice. Enhancement by submergence and low oxygen levels. Pl. Physiol. 84: 282–286. 10.1104/pp.84.2.282 CASPubMedWeb of Science®Google Scholar Côme, D., Corbineau, F. & Soudain, P. (1991): Beneficial effects of oxygen deprivation on germination and plant development: In: M.B. Jackson, D.D. Davies & H. Lambers (eds) Plant Life under Oxygen Stress. 69–84. SPB Academic Publishing bv, The Hague, The Netherlands. Google Scholar Constable, J.V.H., Grave, J.B. & Longstreth, D.J. (1992): High carbon dioxide concentrations in aerenchyma of Typha latifolia. Am. J. Bot. 79: 415–418. 10.1002/j.1537-2197.1992.tb14568.x Web of Science®Google Scholar P.F. Cooper & B.C. Findlater (eds) (1990). Constructed wetlands in water pollution control. IAWPC. Pergamon Press, Oxford. Google Scholar Coutts, M.P. & Phillipson, J.J. (1978a): Tolerance of tree roots to waterlogging. II. Adaptation of sitka spruce and lodgepole pine to waterlogged soil. New Phytol. 80: 71–77. 10.1111/j.1469-8137.1978.tb02265.x Web of Science®Google Scholar Coutts, M.P. & Phillipson, J.J. (1978b): Tolerance of tree roots to waterlogging. III. Oxygen transport in lodgepole pine and sitka spruce roots of primary structure. New Phytol. 80: 341–349. 10.1111/j.1469-8137.1978.tb02264.x Web of Science®Google Scholar Crawford, R.M.M. (1978): Metabolic adaptations to anoxia. In: R.M.M. Crawford & D.D. Hook (eds) Plant Life in Anaerobic Environments. 119–136. Ann Arbor Science, Michigan. Google Scholar R.M.M. Crawford, (ed.) (1987): Plant Life in Aquatic and Amphibious Habitats. British Ecological Society, Special Publication No. 5. Blackwell Scientific Publications, Oxford. Google Scholar Crawford, R.M.M. (1992): Oxygen availability as an ecological limit to plant distribution. Adv. in Ecol. Res. 23: 93–185. 10.1016/S0065-2504(08)60147-6 CASWeb of Science®Google Scholar Crawford, L.A., Bown, A.W., Breitkreuz K.E. & Guinel, F.C. (1994): The synthesis of γ-aminobutyric acid in response to treatments reducing cytosolic pH. Pl. Physiol. 104: 865–871. 10.1104/pp.104.3.865 PubMedGoogle Scholar Curran, M., Cole, M. & Allaway, W.G. (1986): Root aeration and respiration in young mangrove plants, Avicennia marina (Forsk) Vieh. J. Exp. Bot. 37: 1225–1233. 10.1093/jxb/37.8.1225 Web of Science®Google Scholar Dacey, J.W.A. (1980): Internal winds in water lilies: an adaptation for life in anaerobic sediments. Science 210: 1017–1019. 10.1126/science.210.4473.1017 CASPubMedWeb of Science®Google Scholar Dacey, J.W.A. (1981): Pressurized ventilation in the yellow water lily. Ecol. 62: 1137–1147. 10.2307/1937277 Web of Science®Google Scholar Dacey, J.W.H. & Klug, M.J. (1979): Methane efflux from lake sediments through water lilies. Sciences 203: 1253–1255. 10.1126/science.203.4386.1253 CASPubMedWeb of Science®Google Scholar Davies, D.D. (1986): The fine control of sytosolic pH. Physiol. Plant. 67: 702–706. 10.1111/j.1399-3054.1986.tb05081.x CASWeb of Science®Google Scholar Davies, D.D., Kenworthy, P., Mocquot, B. & Roberts, K. (1987): The effects of anoxia on the ultrastructure of pea roots. In: R.M.M. Crawford (ed.) Plant Life in Aquatic and Amphibious Habitats. British Ecological Society. Special Publication No. 5. 265–277. Blackwell Scientific Publications, Oxford. Google Scholar De Willegan, P. & Van Noordwijk, M. (1989): Model calculations on the relative importance of internal longitudinal diffusion for aeration of roots of non-wetland plants. Pl. & Soil 113: 111–119. 10.1007/BF02181928 Google Scholar Drew, M.C. (1988): Effects of flooding and oxygen deficiency on plant mineral nutrition. In: A. Lauchli & P.B. Tinker (eds.) Advances in Plant Nutrition, Vol. III. 115–159. Praeger, New York. Google Scholar Drew, M.C., Jackson, M.B. & Giffard, S. (1979): Ethylene promoted adventitious rooting and cortical air spaces (aerenchyma) in roots may be adaptive responses to flooding in Zea mays L. Planta 147: 83–88. 10.1007/BF00384595 CASPubMedWeb of Science®Google Scholar Drew, M.C., Saglio, P.H. & Pradet, A. (1985): Larger adenylate charge and ATP/ADP ratios in aerenchymatous roots of Zea mays in anaerobic media as a consequence of improved oxygen transport. Planta 165: 51–58. 10.1007/BF00392211 CASPubMedWeb of Science®Google Scholar El-Baltagy, A.S. & Hall, M.A. (1974): The effect of water stress upon endogeneous ethylene levels in Vicia faba. New Phytol. 73: 47–60. 10.1111/j.1469-8137.1974.tb04605.x Web of Science®Google Scholar Else, M.A., Davies, W.J., Hall, K.C. & Jackson, M.B. (1993): Knowledge of xylem sap flow rate is a pre-requisite for accurate estimates of hormone transport from roots to shoots. In: J.C. Pech, A. Latché & C. Balagué (eds) Cellular and Molecular Aspects of the Plant Hormone Ethylene. 373–374. Kluwer Academic, Dordrecht, The Netherlands. 10.1007/978-94-017-1003-9_85 Web of Science®Google Scholar Else, M.A., Davies, W.J., Whitford, P.N., Hall, K.C. & Jackson, M.B. (1994): Concentrations of absisic acid and other solutes in xylem sap from root systems of tomato and castor-oil plants are distorted by wounding and variable sap flow rates. J. Exp. Bot. 45: 317–323. 10.1093/jxb/45.3.317 CASWeb of Science®Google Scholar Else, M.A., Hall, K., Arnold, G.M., Davies, W.J. & Jackson, M.B. (1995): Export of ABA, ACC, phosphate and nitrate from roots to shoots of flooded plants. Accounting for the effects of xylem sap flow rate on concentration and delivery. Pl. Physiol. (in press). Google Scholar Engler, R.M. & Patrick, W.H. Jr. (1975): Stability of sulphides of manganese, iron, zinc, copper and mercury in flooded soil. Soil Sci. 119: 217–221. 10.1097/00010694-197503000-00006 CASWeb of Science®Google Scholar English, P.J., Lycett, G.W., Roberts, J.A., Hall, K.C. & Jackson, M.B. (1993): The use of anti-sense transgenic tomato plants to study the role of ethylene in responses to waterlogging. In: J.C. Pech, A. Latché & C. Balagué (eds) Cellular and Moelcular Aspects of the Plant Hormone Ethylene. 261–262. Kluwer Academic, Dordrecht, The Netherlands. 10.1007/978-94-017-1003-9_61 Web of Science®Google Scholar Everard, J.D., LeCain, D.R., Rumpho, M.E. & Kennedy, R.A. (1991): Mesocotyl root formation in Echinochloa phyllopogon (Poacae) in relation to root zone aeration. Am. J. Bot. 78: 462–469. 10.1002/j.1537-2197.1991.tb15212.x CASWeb of Science®Google Scholar Fabijan, D., Taylor, J.S. & Reid, D.M. (1981): Adventitious rooting in hypocotyls of sunflower (Helianthus annuus) seedlings II. Action of gibberellins, cytokinins, auxins and ethylene. Physiol. Pl. 53: 589–597. 10.1111/j.1399-3054.1981.tb02755.x CASWeb of Science®Google Scholar Fagerstedt, K.V. (1992): Development of aerenchyma in roots and rhizomes of Carex rostrata (Cyperaceae). Nord. J. Bot. 12: 115–120. 10.1111/j.1756-1051.1992.tb00207.x Web of Science®Google Scholar Fahn, T.W.-M., Lane, A.N. & Higashi, R.M. (1993): Energy and fermentation metabolism in hypoxic rice coleoptiles—a multinuclear NMR approach. In: M.B. Jackson & C.R. Black (eds) Interacting Stresses on Plants in a Changing Climate. 333–352. NATO ASI Series 1, vol. 16. Springer-Verlag, Berlin. 10.1007/978-3-642-78533-7_21 Google Scholar Fry, S.C. (1988): The Growing Plant Cell Wall: Chemical and Metabolic Analysis. Longmans, Harlow, UK. Google Scholar Gambrell, R.P. & Patrick, W.H. Jr (1978): Chemical and mircrobiological properties of anaerobic soils and sediments. In: D.D. Hook & R.M.M. Crawford (eds) Plant Life in Anaerobic Environments. 13–88. Ann Arbor Science, Michigan. Google Scholar Gambrell, R.P., Delaune, R.D. & Patrick, W.H. Jr. (1991): Redox processes in soils following oxygen depletion. In: M.B. Jackson, D.D. Davies & H. Lambers (eds) Plant Life under Oxygen Stress. 101–117. SPB Academic Publishing bv, The Hague, The Netherlands. Google Scholar Gaynard, T.J. (1979): Some aspects of internal aeration in wetland plants. Ph.D. Thesis, University of Hull, England. Google Scholar Gaynard, T.J. & Armstrong, W. (1987): Some aspects of internal plant aeration. In: R.M.M. Crawford (ed.) Plant Life in Aquatic and Amphibious Habitats. British Ecological Society, Special Publication No. 5. 303–320. Blackwell Scientific Publications, Oxford. Google Scholar Gibbs, J., Bruxelle, G. de., Armstrong, W. & Greenway, H. (1994): Evidence for anoxic zones in 2–3 mm tips of aerenchymatous maize roots under low oxygen supply. Aust. J. Plant Physiol. (in press). Google Scholar Gleason, M.L. & Zeiman, J.C. (1981): Influence of tidal inundation on internal oxygen supply of Spartina alterniflora and Spartina patens. Estuar. Coastl. Shelf Sci. 13: 45–57. Google Scholar Gray, K.R., Biddlestone, A.J., Job, G. & Galanos, E. (1990): The use of reed beds for the treatment of agricultural effluents. In: P.F. Cooper & B.C. Findlater (eds) The Use of Constructed Wetlands in Water Pollution Control. 333–346. Pergamon Press, Oxford. 10.1016/B978-0-08-040784-5.50036-X Google Scholar Green, M.S. & Etherington, J.R. (1977): Oxidation of ferrous ion by rice (Oryza sativa L.) roots: a mechanism for waterlogging tolerance? J. Exp. Bot. 28: 678–690. 10.1093/jxb/28.3.678 CASWeb of Science®Google Scholar Gries, C., Kappen, L. & Iosch, R. (1990): Mechanism of flood tolerance in reed, Phragmites australis (Cav.) Trin. ex Steudel. New Phytol. 114: 589–593. 10.1111/j.1469-8137.1990.tb00429.x Web of Science®Google Scholar Grime, J.P. (1989): The stress debate: symptom of impending synthesis? Biol. J. Linn. Soc. 37: 3–17. 10.1111/j.1095-8312.1989.tb02002.x Web of Science®Google Scholar Grinieva, G.M. & Bragina, T.V. (1993): Structural and functional patterns of maize adaptation to flooding. Russ. J. Pl. Physiol. 40: 662–667. Google Scholar Grosse, W. & Bauch, C. (1991): Gas transfer in floating-leaved plants. Vegetatio 97: 185–192. 10.1007/BF00035391 Web of Science®Google Scholar Grosse, W., Büchel, H.B. & Tiebel, H. (1991): Pressurized ventilation in wetland plants. Aquat. Bot. 39: 89–98. 10.1016/0304-3770(91)90024-Y Web of Science®Google Scholar Grosse, W., Fyre, J. & Lattermann, S. (1992): Root aeration in wetland trees by pressurized gas transport. Tree Physiol. 10: 285–295. 10.1093/treephys/10.3.285 CASPubMedWeb of Science®Google Scholar Gutteridge, J.M.C. & Halliwell, B. (1990): Reoxygenation injury and antioxidant protection; a tale of two paradoxes. Archiv. Biochem. Biophys. 283: 223–226. 10.1016/0003-9861(90)90635-C CASPubMedWeb of Science®Google Scholar Haldemann, Ch. & Brändle, R. (1986): Seasonal variations of reserves and of fermentation processes in wetland plant rhizomes at the natural site. Flora 178: 307–313. 10.1016/S0367-2530(17)31516-5 CASWeb of Science®Google Scholar Haldemann, Ch & Brändle, R. (1988): Amino acid composition in rhizomes of wetland species in their natural habitat and under anoxia. Flora 180: 407–411. CASWeb of Science®Google Scholar Hérouart D., Bowler C., Willekens H., Van Camp W., Slooten L., Van Montagu, M. & Inzé, D. (1993): Genetic engineering of oxidative stress resistance in higher plants. Phil. Trans. Royal Soc. Lond. B 342: 235–240. 10.1098/rstb.1993.0152 CASWeb of Science®Google Scholar Hanhijärvi, A.M. & Gagerstedt, K.V. (1994): Comparison of the effect of natural and experimental anoxia on carbohydrate and energy metabolism in Iris pseudacorus rhizomes. Physiol. Pl. 90: 437–444. 10.1111/j.1399-3054.1994.tb08799.x CASWeb of Science®Google Scholar Hansen, J.I. & Andersen, F.O. (1981): Effects of Phragmites australis roots and redox potentials, nitrification and bacterial numbers in the sediment. In: A. Broberg & T. Tiren (eds). 72–88. 9th Nordic Symposium on Sediments. Google Scholar Healy, M.T. & Armstrong, W. (1972): The effectiveness of internal oxygen transport in a mesophyte (Pisum sativum L.). Planta 103: 302–309. 10.1007/BF00386701 PubMedWeb of Science®Google Scholar Hendry, G.A.F. & Brocklebank K.J. (1985): Iron-induced oxygen radical metabolism in waterlogged plants. New Phytol. 101: 199–206. 10.1111/j.1469-8137.1985.tb02826.x CASWeb of Science®Google Scholar Henzi, Th. & Brändle, R. (1993): Long term survival of rhizomat
Referência(s)