Non-empirical calculations of NMR indirect carbon-carbon coupling constants. Part 11?saturated carbocycles: a reference data set and a practical guide to structural elucidation
2004; Wiley; Volume: 43; Issue: 2 Linguagem: Inglês
10.1002/mrc.1515
ISSN1097-458X
Autores Tópico(s)Asymmetric Synthesis and Catalysis
ResumoMagnetic Resonance in ChemistryVolume 43, Issue 2 p. 101-116 Research Article Non-empirical calculations of NMR indirect carbon–carbon coupling constants. Part 11—saturated carbocycles: a reference data set and a practical guide to structural elucidation† Leonid B. Krivdin, Corresponding Author Leonid B. Krivdin [email protected] A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky Street 1, 664033 Irkutsk, Russia Department of Chemistry, Technical Academy of Angarsk, Tchaikovsky Avenue 60, 665835 Angarsk, RussiaDepartment of Chemistry, Technical Academy of Angarsk, Tchaikovsky Avenue 60, 665835 Angarsk, Russia.===Search for more papers by this author Leonid B. Krivdin, Corresponding Author Leonid B. Krivdin [email protected] A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, Favorsky Street 1, 664033 Irkutsk, Russia Department of Chemistry, Technical Academy of Angarsk, Tchaikovsky Avenue 60, 665835 Angarsk, RussiaDepartment of Chemistry, Technical Academy of Angarsk, Tchaikovsky Avenue 60, 665835 Angarsk, Russia.===Search for more papers by this author First published: 16 November 2004 https://doi.org/10.1002/mrc.1515Citations: 23 † For Part 10, see Ref. 10 AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Abstract Carbon–carbon spin–spin coupling constants, J(C,C), calculated at the SOPPA level for 50 mono-, bi- and polycycloalkanes in 10 previous papers are put in order and discussed on unified grounds. Basic structural trends of J(C,C) established in the original publications are summarized and briefly outlined for the representative series. Many unknown couplings are predicted with high reliability, and this provides a good reference data set and a practical guide to the structural elucidation of saturated carbocycles by means of J(C,C) coupling constants. Copyright © 2004 John Wiley & Sons, Ltd. REFERENCES 1Sauer SPA, Krivdin LB. Magn. Reson. Chem. 2004; 42: 671. 2Krivdin LB, Sauer SPA, Peralta JE, Contreras RH. Magn. Reson. Chem. 2002; 40: 187. 3Krivdin LB. Magn. Reson. Chem. 2004; 42: 500. 4Krivdin LB. Magn. Reson. Chem. 2003; 41: 91. 5Krivdin LB. Magn. Reson. Chem. 2003; 41: 417. 6Krivdin LB. Magn. Reson. Chem. 2003; 41: 885. 7Krivdin LB. Magn. Reson. Chem. 2004; 42: 1. 8Krivdin LB. Magn. Reson. Chem. 2004; 42: S168. 9Krivdin LB. Magn. Reson. Chem. 2003; 41: 157. 10Krivdin LB. Magn. Reson. Chem. 2004; 42: 919. 11(a) Nielsen ES, Jørgensen P, Oddershede J. J. Chem. Phys. 1980; 73: 6238; (b) Packer MJ, Dalskov EK, Enevoldsen T, Jensen HJAa, Oddershede J. J. Chem. Phys. 1996; 105: 5886; (c) Bak KL, Koch H, Oddershede J, Christiansen O, Sauer SPA. J. Chem. Phys. 2000; 112: 4173. 12(a) Krivdin LB, Kalabin GA. Progr. Nucl. Magn. Reson. Spectrosc. 1989; 21: 293; (b) Krivdin LB, Della EW. Progr. Nucl. Magn. Reson. Spectrosc. 1991; 23: 301; (c) Wray V. Progr. Nucl. Magn. Reson. Spectrosc. 1979; 13: 177; (d) Wray V, Hansen PE. Annu. Rep. NMR Spectrosc. 1981; 11: 99; (e) Marshall JL. Carbon–Carbon and Carbon–Proton NMR Couplings: Applications to Organic Stereochemistry and Conformational Analysis. Verlag Chemie International: Deerfield Beach, FL, 1983. 13(a) Sauer SPA. J. Phys. B 1997; 30: 3773; (b) Enevoldsen T, Oddershede J, Sauer SPA. Theor. Chem. Acc. 1998; 100: 275. 14Helgaker T, Jaszuński M, Ruud K. Chem. Rev. 1999; 99: 293. 15Ruden TA, Helgaker T, Jaszuński M. Chem. Phys. 2004; 296: 53. 16Wiggelsworth RD, Raynes WT, Kirpekar S, Oddershede J, Sauer SPA. J. Chem. Phys. 2000; 112: 3735. 17Lynden-Bell RM, Sheppard N. Proc. R. Soc. London, Sect. A 1962; 269: 385. 18Jackowski K, Wilczek M, Pecul M, Sadlej J. J. Phys. Chem., Sect. A 2000; 104: 5955. 19Wu A, Cremer D. Phys. Chem. Chem. Phys. 2003; 5: 4541. 20Sychrovský V, Gräfenstein J, Cremer D. J. Chem. Phys. 2000; 113: 3530. 21Stöcker M. Org. Magn. Reson. 1982; 20: 175. 22(a) Klessinger M, Cho JH. Angew. Chem. 1982; 94: 782; (b) Klessinger M, Megen H, Wilhelm K. Chem. Ber. 1982; 115: 50; (c) Klessinger M, Cho JH. Org. Magn. Reson. 1983; 21: 465. 23(a) Chirkina EA, Sergeeva OR, Krivdin LB. Russ. J. Org. Chem. 2000; 36: 509; (b) Chirkina EA, Sergeeva OR, Krivdin LB. Russ. J. Org. Chem. 1999; 35: 500; (c) Chirkina EA, Sergeeva OR, Krivdin LB. Russ. J. Org. Chem. 1997; 33: 1068; (d) Chirkina EA, Sergeeva OR, Krivdin LB. Russ. J. Org. Chem. 1997; 33: 975; (e) Chirkina EA, Sergeeva OR, Krivdin LB. Russ. J. Org. Chem. 1996; 32: 955; (f) Efimov VN, Perelyaev YuN, Krivdin LB. Russ. J. Org. Chem. 1993; 29: 1474. 24Wardeiner J, Lüttke W, Bergholz R, Machinek R. Angew. Chem. Int. Ed. Engl. 1982; 21: 872. 25(a) Soncini A, Lazzeretti P. J. Chem. Phys. 2003; 118: 7165; (b) Soncini A, Lazzeretti P. J. Chem. Phys. 2003; 119: 1343. 26Malkina OL, Malkin VG. Angew. Chem. Int. Ed. 2003; 42: 4335. 27Stocker M, Klessinger M. Org. Magn. Reson. 1979; 12: 107. 28Roznyatovski VA, Sergeev NM, Chertkov VA. Magn. Reson. Chem. 1991; 29: 304. 29Della EW, Pigou PE, Taylor DK, Krivdin LB, Contreras RH. Aust. J. Chem. 1993; 46: 63. 30(a) Barfield M, Facelli JC, Della EW, Pigou PE. J. Magn. Reson. 1984; 59: 282; (b) Barfield M, Della EW, Pigou PE. J. Am. Chem. Soc. 1984; 106: 5051; (c) Barfield M. J. Am. Chem. Soc. 1980; 102: 1; (d) Barfield M, Della EW, Pigou PE, Walter SR. J. Am. Chem. Soc. 1982; 104: 3549; (e) Barfield M, Brown SE, Canada ED, Ledford ND, Marshall JL, Walter SR, Yakali E. J. Am. Chem. Soc. 1980; 102: 3355. 31(a) Aucar GA, Zunino V, Ferrraro MB, Giribet CG, Ruiz de Azua MC, Contreras RH. J. Mol. Struct. (Theochem) 1990; 205: 63; (b) Lazzeretti P, Malagoli M, Zanasi R, Della EW, Lochert IJ, Giribet CG, Ruiz de Azua MC, Contreras RH. J. Chem. Soc., Faraday Trans. 1995; 91: 4031. 32Newton MD, Schulman JM. J. Am. Chem. Soc. 1972; 94: 767. 33Pomerantz M, Fink R, Gray GA. J. Am. Chem. Soc. 1976; 98: 291. 34Finkelmeier H., Lüttke W. J. Am. Chem. Soc. 1978; 100: 6261. 35(a) Schulman JM, Newton MD. J. Am. Chem. Soc. 1974; 96: 6295; (b) Schulman JM, Venanzi TJ. Tetrahedron Lett. 1976; 17: 1461. 36Chirkina EA, Sergeeva OR, Krivdin LB. Russ. J. Org. Chem. 1996; 32: 955. 37Galasso V. Chem. Phys. 1987; 117: 414. 38Galasso V. Chem. Phys. Lett. 1994; 230: 387. 39Sekino H, Bartlett RJ. Chem. Phys. Lett. 1994; 225: 486. 40Carmichael I. J. Phys. Chem. 1993; 97: 1789. 41Jaszunski M, Dolgonos G, Dodziuk H. Theor. Chem. Acc. 2002; 108: 240. 42Bertrand RD, Grant DM, Allred EL, Hinshow JC, Strong AB. J. Am. Chem. Soc. 1972; 94: 997. 43Weigert FJ, Roberts JD. J. Am. Chem. Soc. 1972; 94: 6021. 44Wiberg KB, Walker FH. J. Am. Chem. Soc. 1982; 104: 5239. 45Slee TS. In Modern Models of Bonding and Delocalization, JF Liebman, A Greenberg (eds). VCH: New York, 1988; 63. 46Pecul M, Dodziuk H, Jaszunski M, Lukin O, Leszczynski J. Phys. Chem. Chem. Phys. 2001; 3: 1986. 47Werner M, Stephenson DS, Szeimies G. Liebigs Ann. Org. Bioorg. Chem. 1996; 11: 1705. 48Finkelmeier H., Luettke W. J. Am. Chem. Soc. 1978; 100: 6261. 49Trupp B, Handreck DR, Böhm HP, Knothe L, Fritz H, Prinzbach H. Chem. Ber. 1991; 124: 1757. 50Galasso V. Int. J. Quantum Chem. 1996; 57: 587. 51Loerzer T, Machinek R, Luttke W, Franz LH, Malsch KD, Maier G. Angew. Chem. 1983; 95: 914. 52Grutzner JB, Jautelat M, Dence JB, Smith RA, Roberts JD. J. Am. Chem. Soc. 1970; 92: 7107. 53Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA. J. Comput. Chem. 1993; 14: 1347. 54Helgaker T, Jensen HJAa, Joergensen P, Olsen J, Ruud K, Aagren H, Auer AA, Bak KL, Bakken V, Christiansen O, Coriani S, Dahle P, Dalskov EK, Enevoldsen T, Fernandez B, Haettig C, Hald K, Halkier A, Heiberg H, Hettema H, Jonsson D, Kirpekar S, Kobayashi R, Koch H, Mikkelsen KV, Norman P, Packer MJ, Pedersen TB, Ruden TA, Sanchez A, Saue T, Sauer SPA, Schimmelpfennig B, Sylvester-Hvid KO, Taylor PR, Vahtras O. DALTON, a Molecular Electronic Structure Program, Release 1.2.1, 2001; http://www.kjemi.uio.no/software/dalton/dalton.html. 55(a) Dunning TH Jr. J. Chem. Phys. 1989; 90: 1007; (b) Kendall RA, Dunning TH Jr, Harrison RJ. J. Chem. Phys. 1992; 96: 6796; (c) Woon DE, Dunning TH Jr. J. Chem. Phys. 1993; 98: 1358. 56Woon DE, Dunning TH Jr. J. Chem. Phys. 1995; 103: 4572. Citing Literature Volume43, Issue2February 2005Pages 101-116 ReferencesRelatedInformation
Referência(s)