Artigo Revisado por pares

Iterative Techniques for the Nash Solution in Quadratic Games with Unknown Parameters

1986; Society for Industrial and Applied Mathematics; Volume: 24; Issue: 4 Linguagem: Inglês

10.1137/0324052

ISSN

1095-7138

Autores

George P. Papavassilopoulos,

Tópico(s)

Air Traffic Management and Optimization

Resumo

Previous article Iterative Techniques for the Nash Solution in Quadratic Games with Unknown ParametersG. P. PapavassilopoulosG. P. Papavassilopouloshttps://doi.org/10.1137/0324052PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAboutAbstractWe study adaptive schemes for repeated quadratic Nash games in a deterministic and a stochastic framework. The convergence of the schemes is demonstrated under certain conditions.[1] T. Basar and , G. J. Olsder, Dynamic noncooperative game theory, Mathematics in Science and Engineering, Vol. 160, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York, 1982xii+430 83i:90169 0479.90085 Google Scholar[2] T. Basar, Equilibrium solutions in two-person quadratic decision problems with static information structures, IEEE Trans. Automatic Control, AC-20 (1975), 320–328 10.1109/TAC.1975.1100977 55:7534 0382.90113 CrossrefISIGoogle Scholar[3] G. P. Papavassilopoulos, Solution of some stochastic quadratic Nash and leader-follower games, SIAM J. Control Optim., 19 (1981), 651–666 10.1137/0319041 83a:93057 0498.93057 LinkISIGoogle Scholar[4] I. D. Landau, A survey of modal reference adaptive techniques-theory and applications, Automatica, 10 (1974), 353–379 10.1016/0005-1098(74)90064-8 0284.93018 CrossrefISIGoogle Scholar[5] K. J. Astrom and , B. Wittenmark, On self tuning regulators, Automatica, 9 (1973), 185–199 10.1016/0005-1098(73)90073-3 0249.93049 CrossrefISIGoogle Scholar[6] P. R. Kumar, Optimal adaptive control of linear-quadratic-Gaussian systems, SIAM J. Control Optim., 21 (1983), 163–178 10.1137/0321009 84d:93069 0508.93066 LinkISIGoogle Scholar[7] Y. M. Chan, Ph.D. Thesis, Self-tuning methods for multiple controller systems, Dept. Electrical Engineering, Univ. Illinois at Urbana-Champaign, 1981 Google Scholar[8] T. L. Ting, , J. B. Cruz, Jr. and , R. A. Milito, Adaptive incentive controls for Stackelberg games with unknown cost functionals, American Control Conference, San Diego, CA, 1984, June Google Scholar[9] H. Robbins and , S. Monro, A stochastic approximation method, Ann. Math. Statistics, 22 (1951), 400–407 13,144j 0054.05901 CrossrefISIGoogle Scholar[10] K. L. Chung, On a stochastic approximation method, Ann. Math. Statistics, 25 (1954), 463–483 16,272a 0059.13203 CrossrefISIGoogle Scholar[11] J. R. Blum, Multidimensional stochastic approximation methods, Ann. Math. Statistics, 25 (1954), 737–744 16,382e 0056.38305 CrossrefISIGoogle Scholar[12] J. Sarks, Asymptotic distribution of stochastic approximation procedures, Ann. Math. Statist., 29 (1958), 373–405 20:4886 0229.62010 CrossrefISIGoogle Scholar[13] L. Schmetterer, P. Krishnaiah, Multidimensional stochastic approximationMultivariate Analysis, II (Proc. Second Internat. Sympos., Dayton, Ohio, 1968), Academic Press, New York, 1969, 443–460 41:2844 Google Scholar[14] M. T. Wasan, Stochastic approximation, Cambridge Tracts in Mathematics and Mathematical Physics, No. 58, Cambridge University Press, London, 1969x+202 40:975 0293.62026 Google Scholar[15] H. J. Kushner and , D. S. Clark, Stochastic approximation methods for constrained and unconstrained systems, Applied Mathematical Sciences, Vol. 26, Springer-Verlag, New York, 1978x+261 80g:62065 0381.60004 CrossrefGoogle Scholar[16] J. M. Ortega and , W. C. Rheinboldt, Iterative solution of nonlinear equations in several variables, Academic Press, New York, 1970xx+572 42:8686 0241.65046 Google Scholar[17] R. B. Ash, Real analysis and probability, Academic Press, New York, 1972xv+476 55:8280 Google Scholar[18] J. B. Harsangi, Games with incomplete information played by “Bayesian” players. I. The basic model, Management Sci., 14 (1967), 159–182 39:7953 0207.51102 J. B. Harsangi, Games with incomplete information played by “Bayesian” players. II. Bayesian equilibrium points, Management Sci., 14 (1968), 320–334 39:7954 0177.48402 J. B. Harsangi, Games with incomplete information played by “Bayesian” players. III. The basic probability distribution of the game, Management Sci., 14 (1968), 486–502 39:7955 0177.48501 CrossrefISIGoogle ScholarKeywordsNash equilibriumadaptive Gamesstochastic approximation Previous article FiguresRelatedReferencesCited ByDetails Adaptive rules for discrete-time Cournot games of high competition level marketsOperational Research, Vol. 21, No. 4 | 9 October 2019 Cross Ref An Inverse-Adjusted Best Response Algorithm for Nash EquilibriaFrancesco Caruso, Maria Carmela Ceparano, and Jacqueline MorganSIAM Journal on Optimization, Vol. 30, No. 2 | 18 June 2020AbstractPDF (667 KB)Pretending in Dynamic Games, Alternative Outcomes and Application to Electricity MarketsDynamic Games and Applications, Vol. 8, No. 4 | 28 August 2017 Cross Ref Convergence analysis on variable sample distributed methods for stochastic Nash equilibrium2016 Chinese Control and Decision Conference (CCDC) | 1 May 2016 Cross Ref Cheating in adaptive games motivated by electricity markets2014 6th International Symposium on Communications, Control and Signal Processing (ISCCSP) | 1 May 2014 Cross Ref Bilevel direct search method for leader–follower problems and application in health insuranceComputers & Operations Research, Vol. 41 | 1 Jan 2014 Cross Ref On generalized Nash games and variational inequalitiesOperations Research Letters, Vol. 35, No. 2 | 1 Mar 2007 Cross Ref Exact penalty functions for generalized Nash problemsLarge-Scale Nonlinear Optimization | 1 Jan 2006 Cross Ref Coupled constraint Nash equilibria in environmental gamesResource and Energy Economics, Vol. 27, No. 2 | 1 Jun 2005 Cross Ref Distributed computation of Pareto solutions inn-player gamesMathematical Programming, Vol. 74, No. 1 | 1 Jul 1996 Cross Ref On distributed computation of Pareto solutions for two decision makersIEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, Vol. 26, No. 4 | 1 Jul 1996 Cross Ref On relaxation algorithms in computation of noncooperative equilibriaIEEE Transactions on Automatic Control, Vol. 39, No. 6 | 1 Jun 1994 Cross Ref Learning algorithms for repeated bimatrix Nash games with incomplete informationJournal of Optimization Theory and Applications, Vol. 62, No. 3 | 1 Sep 1989 Cross Ref Distributed algorithms for the computation of noncooperative equilibriaAutomatica, Vol. 23, No. 4 | 1 Jul 1987 Cross Ref Decentralised adaptive control in a game situation for discrete-time, linear, time-invariant systemsProceedings of 1994 American Control Conference - ACC '94 Cross Ref Volume 24, Issue 4| 1986SIAM Journal on Control and Optimization589-834 History Submitted:26 June 1984Published online:17 February 2012 InformationCopyright © 1986 Society for Industrial and Applied MathematicsKeywordsNash equilibriumadaptive Gamesstochastic approximationMSC codes60G4262L2090D0590D15PDF Download Article & Publication DataArticle DOI:10.1137/0324052Article page range:pp. 821-834ISSN (print):0363-0129ISSN (online):1095-7138Publisher:Society for Industrial and Applied Mathematics

Referência(s)