Comments on Miller's "The Myth of Gauss' Experiment on the Euclidean Nature of Physical Space"
1974; University of Chicago Press; Volume: 65; Issue: 1 Linguagem: Inglês
10.1086/351220
ISSN1545-6994
AutoresGeorge Goe, B. L. van der Waerden, Arthur I. Miller,
Tópico(s)Relativity and Gravitational Theory
ResumoPrevious articleNext article No AccessNotes & CorrespondenceComments on Miller's "The Myth of Gauss' Experiment on the Euclidean Nature of Physical Space"George Goe, B. L. van der Waerden, and Arthur I. MillerGeorge Goe Search for more articles by this author , B. L. van der Waerden Search for more articles by this author , and Arthur I. Miller Search for more articles by this author PDFPDF PLUS Add to favoritesDownload CitationTrack CitationsPermissionsReprints Share onFacebookTwitterLinkedInRedditEmail SectionsMoreDetailsFiguresReferencesCited by Isis Volume 65, Number 1Mar., 1974 Publication of the History of Science Society Article DOIhttps://doi.org/10.1086/351220 Views: 10Total views on this site Citations: 17Citations are reported from Crossref Copyright 1974 History of Science Society, Inc.PDF download Crossref reports the following articles citing this article:Julien Bernard Riemann's and Helmholtz-Lie's problems of space from Weyl's relativistic perspective, Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 61 (Feb 2018): 41–56.https://doi.org/10.1016/j.shpsb.2017.05.010Florin Diacu The Classical N -body Problem in the Context of Curved Space, Canadian Journal of Mathematics 69, no.44 (Nov 2018): 790–806.https://doi.org/10.4153/CJM-2016-041-2Erik W. Grafarend, Rey-Jer You, Rainer Syffus “Sphere to Cylinder”: Polar Aspect, (Jun 2014): 311–323.https://doi.org/10.1007/978-3-642-36494-5_10Erik W. Grafarend, Rey-Jer You, Rainer Syffus “Sphere to Cylinder”: Transverse Aspect, (Jun 2014): 325–329.https://doi.org/10.1007/978-3-642-36494-5_11Erik W. Grafarend, Rey-Jer You, Rainer Syffus “Sphere to Cylinder”: Oblique Aspect, (Jun 2014): 331–335.https://doi.org/10.1007/978-3-642-36494-5_12Erik W. Grafarend, Rey-Jer You, Rainer Syffus “Sphere to Cylinder”: Pseudo-Cylindrical Projections, (Jun 2014): 337–345.https://doi.org/10.1007/978-3-642-36494-5_13Erik W. Grafarend, Rey-Jer You, Rainer Syffus “Ellipsoid-of-Revolution to Cylinder”: Polar Aspect, (Jun 2014): 347–360.https://doi.org/10.1007/978-3-642-36494-5_14Erik W. Grafarend, Rey-Jer You, Rainer Syffus “Ellipsoid-of-Revolution to Cylinder”: Transverse Aspect, (Jun 2014): 361–413.https://doi.org/10.1007/978-3-642-36494-5_15Erik W. Grafarend, Rey-Jer You, Rainer Syffus “Ellipsoid-of-Revolution to Cylinder”: Oblique Aspect, (Jun 2014): 415–435.https://doi.org/10.1007/978-3-642-36494-5_16Erik W. Grafarend, Rey-Jer You, Rainer Syffus Optimal Map Projections by Variational Calculus: Harmonic Maps, (Jun 2014): 571–607.https://doi.org/10.1007/978-3-642-36494-5_22Erik W. Grafarend, Rey-Jer You, Rainer Syffus Map Projections of Alternative Structures: Torus, Hyperboloid, Paraboloid, Onion Shape and Others, (Jun 2014): 609–671.https://doi.org/10.1007/978-3-642-36494-5_23Erik W. Grafarend, Rey-Jer You, Rainer Syffus C 10(3): The Ten Parameter Conformal Group as a Datum Transformation in Three-Dimensional Euclidean Space, (Jun 2014): 673–683.https://doi.org/10.1007/978-3-642-36494-5_24Erik W. Grafarend, Rey-Jer You, Rainer Syffus “Sphere to Tangential Plane”: Oblique Aspect, (Jun 2014): 247–253.https://doi.org/10.1007/978-3-642-36494-5_7Erik W. Grafarend, Rey-Jer You, Rainer Syffus Ellipsoid-of-Revolution to Tangential Plane, (Jun 2014): 255–291.https://doi.org/10.1007/978-3-642-36494-5_8Erik W. Grafarend, Rey-Jer You, Rainer Syffus Ellipsoid-of-Revolution to Sphere and from Sphere to Plane, (Jun 2014): 293–310.https://doi.org/10.1007/978-3-642-36494-5_9Florin Diacu The Curved N-Body Problem: Risks and Rewards, The Mathematical Intelligencer 35, no.33 (Jul 2013): 24–33.https://doi.org/10.1007/s00283-013-9397-1Florin Diacu, Ernesto Pérez-Chavela, J. Guadalupe Reyes Victoria An intrinsic approach in the curved n-body problem: The negative curvature case, Journal of Differential Equations 252, no.88 (Apr 2012): 4529–4562.https://doi.org/10.1016/j.jde.2012.01.002
Referência(s)