Artigo Revisado por pares

Time interval between lightning strokes and the initiation of dart leaders

1968; American Geophysical Union; Volume: 73; Issue: 2 Linguagem: Inglês

10.1029/jb073i002p00497

ISSN

2156-2202

Autores

M. A. Uman, R. E. Voshall,

Tópico(s)

Tree Root and Stability Studies

Resumo

Journal of Geophysical Research (1896-1977)Volume 73, Issue 2 p. 497-506 Time interval between lightning strokes and the initiation of dart leaders Martin A. Uman, Martin A. UmanSearch for more papers by this authorRoy E. Voshall, Roy E. VoshallSearch for more papers by this author Martin A. Uman, Martin A. UmanSearch for more papers by this authorRoy E. Voshall, Roy E. VoshallSearch for more papers by this author First published: 15 January 1968 https://doi.org/10.1029/JB073i002p00497Citations: 84AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Abstract The temperature decay of a lightning channel during the interstroke period is determined theoretically. It is shown that, in the absence of input energy to the channel, the channel temperature will decay sufficiently slowly so that conditions conducive to the initiation and propagation of a dart leader will exist in the channel after a typical interstroke period of 40 msec. Thus, it would appear unnecessary to invoke the special mechanisms suggested by Brook et al. and by Loeb to explain the 'long' interstroke period. The calculations indicate that the lightning channel radius during the latter stages of a lightning stroke is of the order of centimeters. A mechanism is suggested to explain the phenomenon of bead lightning and to account for the observed long-lasting luminosity occurring at certain points on the normal discharge channel. References Allen, R. A., Air radiation graphs: Spectrally integrated fluxes including line contributions and self absorptionRes. Note 561Avco Everett Res. Lab., Everett, Mass.July, 1965. Bates, D. R., A. Dalgarno, Electronic recombination, Atomic and Molecular Processes D. R. Bates, 245– 271, Academic Press, New York, 1962. Berger, K., E. Vogelsanger, Messungen und Resultate der Blitzforschung der Jahre 1955–1963 auf dem Monte San Salvatore, Bull. Schweiz. Electrotech. Vereins, 56, 2, 1965. Brook, M., N. Kitagawa, E. J. Workman, Quanitative study of strokes and continuing currents in lightning discharges to ground, J. Geophys. Res., 67, 649, 1962. Burhorn, F., R. Wienecke, Plasmazusammensetzung, Plasmadichte, Enthalpie, und spezifische Wärme yon Stickstoff, Stickstoffmonoxyd und Luft bei 1, 3, 10, und 30 atm in Temperaturbereich Zwischen 1000 and 30,000°K, Z. Phys. Chem., 215, 270, 1960. Edels, H., J. C. Holme, Measurements of the decay of arc column temperature following interruption, Brit. J. Appl. Phys., 17, 1595, 1966. Evans, W. H., R. L. Walker, High-speed photographs of lightning at close range, J. Geophys. Res., 68, 4455, 1963. Flowers, J. W., The channel of the spark discharge, Phys. Rev., 64, 225, 1943. Gilmore, F. R., Equilibrium composition and thermodynamic properties of air to 24,000°K,Rand Corp. RM-1543,Santa Monica, California,August 24,1955.(Available from Defense Documentation Center as AD 84052.). Griem, H., Plasma Spectroscopy, 129– 168, McGraw-Hill, New York, 1964. Hagenguth, J. H., J. G. Anderson, Lightning to the Empire State Building, 3, Am. Inst. Elec. Eng., 713, 641, 1952. Hansen, C. F., Approximations for the thermodynamic and transport properties of high-temperature airNASA Tech. Rept. R-50, 1959. Kitagawa, N., M. Brook, E. J. Workman, Continuing currents in cloud-to-ground lightning discharges, J. Geophys. Res., 67, 637, 1962. Lewis, W. W., C. M. Foust, Lightning investigation on transmission lines-VII, Trans. Am. Inst. Elec. Eng., 64, 107, 1945. Liepmann, H. W., A. Roshko, Elements of Gasdynamics, 178– 191, John Wiley & Sons, New York, 1957. Loeb, L. B., The mechanisms of stepped and dart leaders in cloud-to-ground lightning strokes, J. Geophys. Res., 71, 4711, 1966. Maecker, H., Elektronendichte und Temperatur in der Säule des Hochstromkohlebogens, Z. Phys., 136, 119, 1953. Malan, D. J., B. F. J. Schonland, Progressive lightning, 7, Directly correlated photographic and electrical studies of lightning from near thunderstorms, Proc. Roy. Soc., A, 191, 513, 1947. McCann, G. D., The measurement of lightning currents in direct strokes, Trans. Am. Inst. Elec. Eng., 63, 1157, 1944. Morris, J. C., G. R. Bach, R. V. Krey, R. W. Liebermann, J. M. Yos, Continuum radiated power for high-temperature air and its components, AIAA J., 4, 1223, 1966. Orville, R. E., A spectral study of lightning strokes, Ph.D. Dissertation,Department of Meteorology, University of Arizona,Tucson,1966. Schonland, B. F. J., The diameter of the lightning channel, Phil. Mag., 23, 503, 1937. Schonland, B. F. J., The lightning discharge, Handbuch der Physik, 22, 576, 1956. Schonland, B. F. J., D. J. Malan, H. Collens, Progressive lightning, 2, Proc. Roy. Soc., A, 152, 595, 1935. Stein, R. P., M. Scheibe, M. W. Syverson, T. M. Shaw, R. C. Gunton, Recombination coefficient of electrons with NO+ ions in shockheated Air, Phys. Fluids, 2, 1641, 1964. Uman, M. A., Bead lightning and the pinch effect, J. Atmospheric Terrest. Phys., 24, 43, 1962. Uman, M. A., The diameter of lightning, J. Geophys. Res., 69, 583, 1964. Winn, W. P., A laboratory analog to the dart leader and return stroke of lightning, J. Geophys. Res, 70, 3265, 1965. Yos, J. M., Transport properties of nitrogen, hydrogen, oxygen, and air to 30,000°K,Avco Corp. Tech. Memo RAD-TM-63-7,Wilmington, Delaware,March 22 1963.(Available from Defense Documentation Center as AD 435053.). Citing Literature Volume73, Issue215 January 1968Pages 497-506 ReferencesRelatedInformation

Referência(s)