Gaussian Model for Chaotic Instability of Hamiltonian Flows
1995; American Physical Society; Volume: 74; Issue: 3 Linguagem: Inglês
10.1103/physrevlett.74.375
ISSN1092-0145
AutoresLapo Casetti, Roberto Livi, Marco Pettini,
Tópico(s)Advanced Thermodynamics and Statistical Mechanics
ResumoA general method to describe Hamiltonian chaos in the thermodynamic limit is presented which is based on a model equation independent of the dynamics. This equation is derived from a geometric approach to Hamiltonian chaos recently proposed, and provides an analytic estimate of the largest Lyapunov exponent $\ensuremath{\lambda}$. The particular case of the Fermi-Pasta-Ulam $\ensuremath{\beta}$-model Hamiltonian is considered, showing an excellent agreement between the values of $\ensuremath{\lambda}$ predicted by the model and those obtained with computer simulations of the tangent dynamics.
Referência(s)