From local to critical fluctuations in lattice models: A nonperturbative renormalization-group approach
2010; American Physical Society; Volume: 82; Issue: 4 Linguagem: Inglês
10.1103/physreve.82.041128
ISSN1550-2376
AutoresTamires Martinhão Machado, N. Dupuis,
Tópico(s)Quantum many-body systems
ResumoWe propose an implementation of the nonperturbative renormalization group (NPRG) which applies to lattice models. Contrary to the usual NPRG approach where the initial condition of the RG flow is the mean-field solution, the lattice NPRG uses the (local) limit of decoupled sites as the (initial) reference system. In the long-distance limit, it is equivalent to the usual NPRG formulation and therefore yields identical results for the critical properties. We discuss both a lattice field theory defined on a $d$-dimensional hypercubic lattice and classical spin models. The simplest approximation, the local potential approximation, is sufficient to obtain the critical temperature and the magnetization of the three-dimensional Ising, $XY$, and Heisenberg models to an accuracy on the order of 1%. We show how the local potential approximation can be improved to include a nonzero anomalous dimension $\ensuremath{\eta}$ and discuss the Berezinskii-Kosterlitz-Thouless transition of the two-dimensional $XY$ model on a square lattice.
Referência(s)