The elasticity of spiders' webs is due to water-induced mobility at a molecular level
1992; Royal Society; Volume: 248; Issue: 1322 Linguagem: Inglês
10.1098/rspb.1992.0054
ISSN1471-2954
AutoresKaren M. Bonthrone, Fritz Vollrath, Brian K. Hunter, Jeremy K. M. Sanders,
Tópico(s)biodegradable polymer synthesis and properties
ResumoRestricted accessMoreSectionsView PDF ToolsAdd to favoritesDownload CitationsTrack Citations ShareShare onFacebookTwitterLinked InRedditEmail Cite this article Bonthrone Karen M. , Vollrath Fritz , Hunter Brian K. and Sanders Jeremy K. M. 1992The elasticity of spiders' webs is due to water-induced mobility at a molecular levelProc. R. Soc. Lond. B.248141–144http://doi.org/10.1098/rspb.1992.0054SectionRestricted accessArticleThe elasticity of spiders' webs is due to water-induced mobility at a molecular level Karen M. Bonthrone Google Scholar Find this author on PubMed Search for more papers by this author , Fritz Vollrath Google Scholar Find this author on PubMed Search for more papers by this author , Brian K. Hunter Google Scholar Find this author on PubMed Search for more papers by this author and Jeremy K. M. Sanders Google Scholar Find this author on PubMed Search for more papers by this author Karen M. Bonthrone Google Scholar Find this author on PubMed , Fritz Vollrath Google Scholar Find this author on PubMed , Brian K. Hunter Google Scholar Find this author on PubMed and Jeremy K. M. Sanders Google Scholar Find this author on PubMed Published:22 May 1992https://doi.org/10.1098/rspb.1992.0054Abstract13C nuclear magnetic resonance (NMR) spectroscopy of intact webs from the common garden spider Araneus diadematus has been used to demonstrate that: (i) water retention is an important role for the viscid coating of capture thread; (ii) the elasticity of capture thread results from water-induced mobility at a molecular level, (iii) the organization and composition of structural and capture thread are different, even in the absence of coating; and (iv) glycoproteins may have a more important presence and structural role than previously realized. Different 13C-labelling patterns of webs were achieved by feeding spiders either with [13C]glucose or with [13C ]amino acids.FootnotesThis text was harvested from a scanned image of the original document using optical character recognition (OCR) software. As such, it may contain errors. Please contact the Royal Society if you find an error you would like to see corrected. Mathematical notations produced through Infty OCR. Previous ArticleNext Article VIEW FULL TEXT DOWNLOAD PDF FiguresRelatedReferencesDetailsCited by Greco G, Arndt T, Schmuck B, Francis J, Bäcklund F, Shilkova O, Barth A, Gonska N, Seisenbaeva G, Kessler V, Johansson J, Pugno N and Rising A (2021) Tyrosine residues mediate supercontraction in biomimetic spider silk, Communications Materials, 10.1038/s43246-021-00147-w, 2:1, Online publication date: 1-Dec-2021. Stellwagen S and Renberg R (2019) Toward Spider Glue: Long Read Scaffolding for Extreme Length and Repetitious Silk Family Genes AgSp1 and AgSp2 with Insights into Functional Adaptation, G3 Genes|Genomes|Genetics, 10.1534/g3.119.400065, 9:6, (1909-1919), Online publication date: 1-Jun-2019. Singla S, Amarpuri G, Dhopatkar N, Blackledge T and Dhinojwala A (2018) Hygroscopic compounds in spider aggregate glue remove interfacial water to maintain adhesion in humid conditions, Nature Communications, 10.1038/s41467-018-04263-z, 9:1, Online publication date: 1-Dec-2018. Amarpuri G, Zhang C, Blackledge T and Dhinojwala A (2017) Adhesion modulation using glue droplet spreading in spider capture silk, Journal of The Royal Society Interface, 14:130, Online publication date: 1-May-2017. Brenner M, Zhou R, Conway D, Lanzano L, Gratton E, Schwartz M and Ha T (2016) Spider Silk Peptide Is a Compact, Linear Nanospring Ideal for Intracellular Tension Sensing, Nano Letters, 10.1021/acs.nanolett.6b00305, 16:3, (2096-2102), Online publication date: 9-Mar-2016. Walker A, Weisman S, Trueman H, Merritt D and Sutherland T (2015) The other prey-capture silk: Fibres made by glow-worms (Diptera: Keroplatidae) comprise cross-β-sheet crystallites in an abundant amorphous fraction, Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 10.1016/j.cbpb.2015.05.008, 187, (78-84), Online publication date: 1-Sep-2015. Sahni V, Miyoshi T, Chen K, Jain D, Blamires S, Blackledge T and Dhinojwala A (2014) Direct Solvation of Glycoproteins by Salts in Spider Silk Glues Enhances Adhesion and Helps To Explain the Evolution of Modern Spider Orb Webs, Biomacromolecules, 10.1021/bm401800y, 15:4, (1225-1232), Online publication date: 14-Apr-2014. Townley M and Tillinghast E (2013) Aggregate Silk Gland Secretions of Araneoid Spiders Spider Ecophysiology, 10.1007/978-3-642-33989-9_21, (283-302), . Adrianos S, Teulé F, Hinman M, Jones J, Weber W, Yarger J and Lewis R (2013) Nephila clavipes Flagelliform Silk-Like GGX Motifs Contribute to Extensibility and Spacer Motifs Contribute to Strength in Synthetic Spider Silk Fibers, Biomacromolecules, 10.1021/bm400125w, 14:6, (1751-1760), Online publication date: 10-Jun-2013. Walter A, Cadenhead N, Sze Weii Lee V, Dove C, Milley E and Elgar M (2012) Water as an Essential Resource: Orb Web Spiders Cannot Balance Their Water Budget by Prey Alone, Ethology, 10.1111/j.1439-0310.2012.02041.x, 118:6, (534-542), Online publication date: 1-Jun-2012. Lefèvre T, Boudreault S, Cloutier C and Pézolet M (2011) Diversity of Molecular Transformations Involved in the Formation of Spider Silks, Journal of Molecular Biology, 10.1016/j.jmb.2010.10.052, 405:1, (238-253), Online publication date: 1-Jan-2011. Humenik M, Scheibel T and Smith A (2011) Spider Silk Molecular Assembly in Natural and Engineered Systems, 10.1016/B978-0-12-415906-8.00007-8, (131-185), . Sahni V, Blackledge T and Dhinojwala A (2011) A Review on Spider Silk Adhesion, The Journal of Adhesion, 10.1080/00218464.2011.583588, 87:6, (595-614), Online publication date: 1-Jun-2011. Eisoldt L, Smith A and Scheibel T (2011) Decoding the secrets of spider silk, Materials Today, 10.1016/S1369-7021(11)70057-8, 14:3, (80-86), Online publication date: 1-Mar-2011. Opell B, Karinshak S and Sigler M (2011) Humidity affects the extensibility of an orb-weaving spider's viscous thread droplets, Journal of Experimental Biology, 10.1242/jeb.055996, 214:17, (2988-2993), Online publication date: 1-Sep-2011. Blackledge T, Kuntner M and Agnarsson I (2011) The Form and Function of Spider Orb Webs Spider Physiology and Behaviour - Behaviour, 10.1016/B978-0-12-415919-8.00004-5, (175-262), . Johnson M, Walter S, Flinn B and Mayer G (2010) Influence of moisture on the mechanical behavior of a natural composite, Acta Biomaterialia, 10.1016/j.actbio.2009.12.006, 6:6, (2181-2188), Online publication date: 1-Jun-2010. Creager M, Jenkins J, Thagard-Yeaman L, Brooks A, Jones J, Lewis R, Holland G and Yarger J (2010) Solid-State NMR Comparison of Various Spiders' Dragline Silk Fiber, Biomacromolecules, 10.1021/bm100399x, 11:8, (2039-2043), Online publication date: 9-Aug-2010. Rousseau M, Lefèvre T and Pézolet M (2009) Conformation and Orientation of Proteins in Various Types of Silk Fibers Produced by Nephila clavipes Spiders, Biomacromolecules, 10.1021/bm9007919, 10:10, (2945-2953), Online publication date: 12-Oct-2009. Liu Y, Shao Z and Vollrath F (2008) Elasticity of Spider Silks, Biomacromolecules, 10.1021/bm7014174, 9:7, (1782-1786), Online publication date: 1-Jul-2008. Dicko C, Kenney J and Vollrath F (2006) β‐Silks: Enhancing and Controlling Aggregation Fibrous Proteins: Amyloids, Prions and Beta Proteins, 10.1016/S0065-3233(06)73002-9, (17-53), . Vollrath F and Porter D (2006) Spider silk as archetypal protein elastomer, Soft Matter, 10.1039/b600098n, 2:5, (377), . Vollrath F (2006) Spider Silk: Thousands of Nano-Filaments and Dollops of Sticky Glue, Current Biology, 10.1016/j.cub.2006.09.050, 16:21, (R925-R927), Online publication date: 1-Nov-2006. Zhou H and Zhang Y (2005) Hierarchical Chain Model of Spider Capture Silk Elasticity, Physical Review Letters, 10.1103/PhysRevLett.94.028104, 94:2 Brown S, Ruxton G and Humphries S (2004) Physical properties of Hydropsyche siltalai (Trichoptera) net silk, Journal of the North American Benthological Society, 10.1899/0887-3593(2004)023 2.0.CO;2, 23:4, (771-779), Online publication date: 1-Dec-2004. Becker N, Oroudjev E, Mutz S, Cleveland J, Hansma P, Hayashi C, Makarov D and Hansma H (2003) Molecular nanosprings in spider capture-silk threads, Nature Materials, 10.1038/nmat858, 2:4, (278-283), Online publication date: 1-Apr-2003. Benjamin S, Düggelin M and Zschokke S (2002) Fine structure of sheet-webs of Linyphia triangularis (Clerck) and Microlinyphia pusilla (Sundevall), with remarks on the presence of viscid silk , Acta Zoologica, 10.1046/j.1463-6395.2002.00098.x, 83:1, (49-59), Online publication date: 1-Jan-2002. Hayashi C and Lewis R (2001) Spider flagelliform silk: lessons in protein design, gene structure, and molecular evolution, BioEssays, 10.1002/bies.1105, 23:8, (750-756), Online publication date: 1-Aug-2001. Higgins L, Townley M, Tillinghast E and Rankin M (2001) VARIATION IN THE CHEMICAL COMPOSITION OF ORB WEBS BUILT BY THE SPIDER NEPHILA CLAVIPES (ARANEAE, TETRAGNATHIDAE), Journal of Arachnology, 10.1636/0161-8202(2001)029[0082:VITCCO]2.0.CO;2, 29:1, (82-94), Online publication date: 1-Apr-2001. Fahnestock S, Yao Z and Bedzyk L (2000) Microbial production of spider silk proteins, Reviews in Molecular Biotechnology, 10.1016/S1389-0352(00)00008-8, 74:2, (105-119), Online publication date: 1-Aug-2000. Vollrath F (2000) Strength and structure of spiders' silks, Reviews in Molecular Biotechnology, 10.1016/S1389-0352(00)00006-4, 74:2, (67-83), Online publication date: 1-Aug-2000. Viney C (2000) Silk Fibres: Origins, Nature and Consequences of Structure Structural Biological Materials - Design and Structure-Property Relationships, 10.1016/S1470-1804(00)80014-0, (295-333), . Hayashi C and Lewis R (1998) Evidence from flagelliform silk cDNA for the structural basis of elasticity and modular nature of spider silks 1 1Edited by M. F. Moody, Journal of Molecular Biology, 10.1006/jmbi.1997.1478, 275:5, (773-784), Online publication date: 1-Feb-1998. Brackenbury J (1997) Spider webs: dew-loading of the linyphiid sheet-web, Journal of Zoology, 10.1111/j.1469-7998.1997.tb02934.x, 242:1, (131-136), Online publication date: 1-May-1997. Köhler T and Vollrath F (1995) Thread biomechanics in the two orb-weaving spidersAraneus diadematus (Araneae, Araneidae) andUloborus walckenaerius (Araneae, Uloboridae), Journal of Experimental Zoology, 10.1002/jez.1402710102, 271:1, (1-17), Online publication date: 1-Jan-1995. Vollrath F and Edmonds D (1995) Elastic properties of spider's capture silk, Naturwissenschaften, 10.1007/BF01134565, 82:8, (379-380), Online publication date: 1-Aug-1995. Edmonds D and Vollrath F (1997) The contribution of atmospheric water vapour to the formation and efficiency of a spider's capture web, Proceedings of the Royal Society of London. Series B: Biological Sciences, 248:1322, (145-148), Online publication date: 22-May-1992. Blamires S, Martens P and Kasumovic M (2017) Fitness consequences of plasticity in an extended phenotype, Journal of Experimental Biology, 10.1242/jeb.167288 Wu C, Blamires S, Wu C and Tso I (2013) Wind induces variations in spider web geometry and sticky spiral droplet volume, Journal of Experimental Biology, 10.1242/jeb.083618 Blamires S, Sahni V, Dhinojwala A, Blackledge T, Tso I and Moya-Larano J (2014) Nutrient Deprivation Induces Property Variations in Spider Gluey Silk, PLoS ONE, 10.1371/journal.pone.0088487, 9:2, (e88487) Blamires S, Hasemore M, Martens P and Kasumovic M (2016) Diet-induced covariation between architectural and physicochemical plasticity in an extended phenotype, Journal of Experimental Biology, 10.1242/jeb.150029 This Issue22 May 1992Volume 248Issue 1322 Article InformationDOI:https://doi.org/10.1098/rspb.1992.0054Published by:Royal SocietyPrint ISSN:0962-8452Online ISSN:1471-2954History: Manuscript received04/02/1992Manuscript accepted19/02/1992Published online01/01/1997Published in print22/05/1992 License:Scanned images copyright © 2017, Royal Society Citations and impact Large datasets are available through Proceedings B's partnership with Dryad
Referência(s)