
OI 630 nm imaging observations of equatorial plasma depletions at 16° S dip latitude
1994; Elsevier BV; Volume: 56; Issue: 11 Linguagem: Inglês
10.1016/0021-9169(94)90113-9
ISSN1878-593X
AutoresY. Sahai, J. Aarons, M. Mendillo, Jeffrey Baumgardner, J. A. Bittencourt, H. Takahashi,
Tópico(s)Atmospheric Ozone and Climate
ResumoEquatorial ionospheric irregularities in the F-layer have been the subject of intensive experimental and theoretical investigations during recent years. The class or irregularities which continues to receive much attention is characterized by large scale plasma depletions, generally referred to as ionospheric plumes and bubbles. The OI 630.0 nm F-region night-glow emissions arising from recombination processes can be used to observe the dynamics of transequatorial ionospheric plasma bubbles and smaller scale plasma irregularities. In a collaborative project between the Center for Space Physics of Boston University and Brazil's National Institute for Space Research (INPE), an all-sky imaging system was operated at Cachoeira Paulista (22.7° S, 45.0° W, dip latitude 15.8° S), between March 1987 and October 1991. In addition to the imager, photometer and VHP polarimeter observations were conducted at Cachoeira Paulista, with ionospheric soundings carried out at both C. Paulista and Fortaleza, the latter at 3.9° S, 38.4° W, 3.7° S dip latitude. For this longitude, the observed seasonal variation of the airglow depletions shows a maximum from October through March and a very low occurrence of airglow depletions from April through September. This long series of OI 630.0 nm imaging observations has permitted us to determine that when there are extended plumes, the altitudes affected over the magnetic equator often exceed 1500 km and probably exceed 2500 km at times, the maximum projection that can be seen from Cachoeira Paulista. This holds true even during years of low solar flux.
Referência(s)