Asymptotically stable visual servoing of manipulators via neural networks

2000; Wiley; Volume: 17; Issue: 12 Linguagem: Inglês

10.1002/1097-4563(200012)17

ISSN

1097-4563

Autores

Rafael Kelly, Jesús Favela, Juan M. Ibarra, Danilo Bassi,

Tópico(s)

Optical measurement and interference techniques

Resumo

Journal of Robotic SystemsVolume 17, Issue 12 p. 659-669 Asymptotically stable visual servoing of manipulators via neural networks Rafael Kelly, Corresponding Author Rafael Kelly [email protected] División de Física Aplicada, CICESE, A.P. 2615, Adm. 1, 22800 Ensenada, B.C., MexicoDivisión de Física Aplicada, CICESE, A.P. 2615, Adm. 1, 22800 Ensenada, B.C., MexicoSearch for more papers by this authorJesús Favela, Jesús Favela División de Física Aplicada, CICESE, A.P. 2615, Adm. 1, 22800 Ensenada, B.C., MexicoSearch for more papers by this authorJuan M. Ibarra, Juan M. Ibarra [email protected] Laboratorio de Robótica y Visión, Dept. de Control Automático, Cinvestav-IPN, A.P. 14-740, 07000 México D.F., MexicoSearch for more papers by this authorDanilo Bassi, Danilo Bassi [email protected] Departamento de Ingeniería Informática, Universidad de Santiago de Chile, Av. Ecuador 3659, Santiago de Chile, ChileSearch for more papers by this author Rafael Kelly, Corresponding Author Rafael Kelly [email protected] División de Física Aplicada, CICESE, A.P. 2615, Adm. 1, 22800 Ensenada, B.C., MexicoDivisión de Física Aplicada, CICESE, A.P. 2615, Adm. 1, 22800 Ensenada, B.C., MexicoSearch for more papers by this authorJesús Favela, Jesús Favela División de Física Aplicada, CICESE, A.P. 2615, Adm. 1, 22800 Ensenada, B.C., MexicoSearch for more papers by this authorJuan M. Ibarra, Juan M. Ibarra [email protected] Laboratorio de Robótica y Visión, Dept. de Control Automático, Cinvestav-IPN, A.P. 14-740, 07000 México D.F., MexicoSearch for more papers by this authorDanilo Bassi, Danilo Bassi [email protected] Departamento de Ingeniería Informática, Universidad de Santiago de Chile, Av. Ecuador 3659, Santiago de Chile, ChileSearch for more papers by this author First published: 22 December 2000 https://doi.org/10.1002/1097-4563(200012)17:12 3.0.CO;2-NCitations: 5AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract In this article we present a class of position control schemes for robot manipulators based on feedback of visual information processed through artificial neural networks. We exploit the approximation capabilities of neural networks to avoid the computation of the robot inverse kinematics as well as the inverse task space–camera mapping which involves tedious calibration procedures. Our main stability result establishes rigorously that in spite of the neural network giving an approximation of these mappings, the closed-loop system including the robot nonlinear dynamics is locally asymptotically stable provided that the Jacobian of the neural network is nonsingular. The feasibility of the proposed neural controller is illustrated through experiments on a planar robot. © 2000 John Wiley & Sons, Inc. References 1 K.I. Funahashi, On the approximate realization of continuous mappings by neural networks, Neural Networks 2 ( 1989), 183–192. 2 K. Hornik, M. Stinchcombe, and H. White, Universal approximation of an unknown mapping and its derivative using multilayer feedforward networks, Neural Networks 3 ( 1990), 551–560. 3 B. Horne, M. Jamashidi, and N. Vadiee, Neural networks in robotics: a survey, J Intell Robotic Syst 3 ( 1990), 51–66. 4 S.M. Prabhu and D.P. Garg, Artificial neural networks based robot control: an overview, J Intell Robotic Syst 15 ( 1996), 333–336. 5 Special issue: Latest developments in neuro-fuzzy intelligent robotic systems, J Robotic Syst 14( 6) ( 1997). 6 Special section: Neural networks for robot control, IEEE Trans Ind Electron 44( 6) ( 1997). 7 Special issue: Neural control and robotics: biology and technology, Neural Networks 11( 7–8) (1998). 8 T.H. Lee, C.J. Harris, and S.S. Ge, Adaptive neural network control of robotic manipulators, World Scientific, Singapore, 1999. 9 F.L. Lewis, S. Jagannathan, and A. Yesildirek, Neural network control of robot manipulators and non-linear systems, Taylor and Francis, London, 1999. 10 H. Ritter, T. Martinetz, and K. Schulten, Neural computation and self-organizing maps, Addison-Wesley, Reading, MA, 1992. 11 H. Hashimoto, T. Kubota, M. Sato, and F. Harashima, Visual control of robotic manipulators based on neural networks, IEEE Trans Ind Electron 39 ( 1992), 490–496. 12 J.A. Walter and K.J. Schulten, Implementation of self-organizing neural networks for visuo-motor control of an industrial robot, IEEE Trans Neural Networks 4 ( 1993), 86–95. 13 M. Zeller, R. Sharma, and K. Schulten, Motion planning of a pneumatic robot using a neural network, IEEE Cont Syst 17 ( 1997), 89–98. 14 T. Ozaki, T. Suzuki, T. Furushashi, S. Okuma, and Y. Uchikawa, Trajectory control of robotic manipulators using neural networks, IEEE Trans Ind Electron 38 ( 1991), 195–202. 15 F.L. Lewis, A. Yesildirek, and K. Liu, Neural net robot controller: structure and stability proofs, Proc 32nd Conf Decision and Control, San Antonio, TX, 1993, pp. 2785–2791. 16 C.C. Tan and A.Y. Zamoya, Neural-network-based direct adaptive controller design for nonlinear robotic manipulators, Proc 32nd Conf Decision and Control, San Antonio, TX, 1993, pp. 3231–3235. 17 T.H. Lee, W.K. Tan, and M.H. Ang, A neural network control system with parallel adaptive enhancements applicable to nonlinear servomechanisms, IEEE Trans Ind Electron 41 ( 1994), 269–277. 18 W. Cheng and J.T. Wen, A two-time-scale neural controller for the tracking control of rigid manipulators, IEEE Trans Syst Man Cybernet 24 ( 1994), 991–1000. 19 A. Abdalla and L. Cai, Stability analysis of robot manipulators subject to feedforward neural controllers, Proc Int Conf Syst Man Cybernet, San Antonio, TX, 1994, pp. 2588–2593. 20 F.L. Lewis, K. Liu, and A. Yesildirek, Neural net robot controller with guaranteed tracking performance, IEEE Trans Neural Networks 6 ( 1995), 703–715. 21 R. Carelli, E.F. Camacho, and D. Patiño, A neural network based feedforward adaptive controller for robots, IEEE Trans Syst Man Cybernet 25 ( 1995), 1281–1288. 22 S. Jung and T.C. Hsia, A new neural network control technique for robot manipulators, Robotica 13 ( 1995), 477–484. 23 S. Jung and T.C. Hsia, A study of neural network control of robot manipulators, Robotica 14 ( 1996), 7–15. 24 S. Hutchinson, G.D. Hager, and P.I. Corke, A tutorial on visual servo control, IEEE Trans Robotics Automat 12 ( 1996), 651–670. 25 G.D. Hager, W.C. Chang, and A.S. Morse, Robot hand-eye coordination based on stereo vision, IEEE Cont Syst ( 1995), 30–39. 26 F. Miyazaki and Y. Masutani, " Robustness of sensory feedback control based on imperfect Jacobian," Robotics research: the fifth international symposium, H. Miura and S. Arimoto (Editors), MIT Press, Cambridge, MA, 1990, pp. 201–208. 27 M. Lei and B.K. Ghosh, Visually guided robotic tracking and grasping of a moving object with a robotic hand-eye system, Proc 32nd Conf Decision and Control, San Antonio, TX, 1993, pp. 1604–1609. 28 E. Coste-Manière, P. Couvignou, and P.K. Khosla, Visual servoing in the task-function framework: a contour following task, J Intell Robotic Syst 12 ( 1995), 1–21. 29 R. Kelly, Robust asymptotically stable visual servoing of planar robots, IEEE Trans Robotics Automat 12 ( 1996), 759–766. 30 R.Y. Tsai, A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lens, IEEE J Robotics Automat RA-3 ( 1987), 323–344. 31 M. Takegaki and S. Arimoto, A new feedback method for dynamic control of manipulators, ASME J Dynamic Syst Measure Cont 102 ( 1981), 119–125. 32 D. Koditschek, Robot planning and control via potential functions, The robotics review I, MIT Press, Cambridge, MA, 1989, pp. 349–367. 33 H. Nijmeijer and A. van der Schaft, Nonlinear dynamical control systems, Springer-Verlag, Berlin, 1990. 34 M.W. Spong and M. Vidyasagar, Robot dynamics and control, Wiley, New York, 1989. 35 D. Koditschek, Natural motion for robot arms, Proc 23rd Conf Decision and Control, Las Vegas, NV, 1984, pp. 733–735. 36 R.K. Lenz and R.Y. Tsai, Techniques for calibration of the scale factor and image center for high accuracy 3D machine vision metrology, IEEE Trans Pattern Anal Mach Intell 10 ( 1988), 713–720. 37 P.K.P. Horn, Robot vision, MIT Press, Cambridge, MA, 1986. 38 J. Weng, P. Choen, and M. Herniou, Camera calibration with distortion models and accuracy evaluation, IEEE Trans Pattern Anal Mach Intell 14 ( 1992), 965–980. 39 J.T. Feddema, C.S. Lee, and O.R. Mitchell, Weighted selection of image features for resolved rate visual feedback control, IEEE Trans Robotics Automat 7 ( 1991), 31–47. 40 R. Sharma and H. Sutanto, A framework for robot motion planning with sensor constraints, IEEE Trans Robotics Automat 13 ( 1997), 61–73. 41 F. Chaumette, P. Rives, and B. Espiau, " Classification and realization of the different vision-based tasks," Visual servoing, K. Hashimoto (Editor), World Scientific, Singapore, 1993, pp. 199–228. 42 K. Hashimoto, A. Aoki, and T. Noritsugu, Visual servoing with redundant features, Proc 35th Conf Decision and Control, Kobe, Japan, 1996, pp. 2482–2483. 43 S. Haykin, Neural networks: a comprehensive foundation, IEEE Press–Macmillan, Englewood Cliffs, NJ, 1994. 44 M. Vidyasagar, Nonlinear systems analysis, 2nd ed., Prentice-Hall, Englewood Cliffs, NJ, 1993. 45 F. Reyes and R. Kelly, Experimental evaluation of identification schemes on a direct drive robot, Robotica 15 ( 1997), 563–571. 46 R. Kelly, P. Shirkey, and M.W. Spong, Fixed-camera visual servo control for planar robots, Proc Int Conf Robotics and Automation, Minneapolis, MN, 1996, pp. 2643–2649. Citing Literature Volume17, Issue12December 2000Pages 659-669 ReferencesRelatedInformation

Referência(s)
Altmetric
PlumX