Bird Predation and Foodplant Specificity in Closely Related Procryptic Insects
1958; University of Chicago Press; Volume: 92; Issue: 864 Linguagem: Inglês
10.1086/282025
ISSN1537-5323
Autores Tópico(s)Insect and Pesticide Research
ResumoPrevious articleNext article No AccessBird Predation and Foodplant Specificity in Closely Related Procryptic InsectsLincoln P. BrowerLincoln P. Brower Search for more articles by this author PDFPDF PLUS Add to favoritesDownload CitationTrack CitationsPermissionsReprints Share onFacebookTwitterLinkedInRedditEmail SectionsMoreDetailsFiguresReferencesCited by The American Naturalist Volume 92, Number 864May - Jun., 1958 Published for The American Society of Naturalists Article DOIhttps://doi.org/10.1086/282025 Views: 12Total views on this site Citations: 48Citations are reported from Crossref PDF download Crossref reports the following articles citing this article:Georg Petschenka, Rayko Halitschke, Tobias Züst, Anna Roth, Sabrina Stiehler, Linda Tenbusch, Christoph Hartwig, Juan Francisco Moreno Gámez, Robert Trusch, Jürgen Deckert, Kateřina Chalušová, Andreas Vilcinskas, and Alice Exnerová Sequestration of Defenses against Predators Drives Specialized Host Plant Associations in Preadapted Milkweed Bugs (Heteroptera: Lygaeinae), The American Naturalist 199, no.66 (Apr 2022): E211–E228.https://doi.org/10.1086/719196Thies H Büscher, Stanislav N Gorb Physical constraints lead to parallel evolution of micro- and nanostructures of animal adhesive pads: a review, Beilstein Journal of Nanotechnology 12 (Jul 2021): 725–743.https://doi.org/10.3762/bjnano.12.57Prayan Pokharel, Marlon Sippel, Andreas Vilcinskas, Georg Petschenka Defense of Milkweed Bugs (Heteroptera: Lygaeinae) against Predatory Lacewing Larvae Depends on Structural Differences of Sequestered Cardenolides, Insects 11, no.88 (Jul 2020): 485.https://doi.org/10.3390/insects11080485Willem J. Augustyn, Bruce Anderson, Jeroen F. van der Merwe, Allan G. Ellis Spatial turnover in host-plant availability drives host-associated divergence in a South African leafhopper (Cephalelus uncinatus), BMC Evolutionary Biology 17, no.11 (Mar 2017).https://doi.org/10.1186/s12862-017-0916-0Eva Líznarová, Stano Pekár Metabolic specialisation on preferred prey and constraints in the utilisation of alternative prey in an ant-eating spider, Zoology 119, no.55 (Oct 2016): 464–470.https://doi.org/10.1016/j.zool.2016.04.004Geerat J. Vermeij Plant defences on land and in water: why are they so different?, Annals of Botany 117, no.77 (Apr 2016): 1099–1109.https://doi.org/10.1093/aob/mcw061Héctor A. Vargas, Marcelo Vargas-Ortiz, Dante Bobadilla, Marcelo Duarte, Wilson Huanca-Mamani Larval Polychromatism in the Neotropical Hairstreak Strymon bubastus (Stoll) (Lycaenidae, Theclinae, Eumaeini) Associated with Two Newly Documented Host Plants in the Atacama Desert, Journal of the Lepidopterists’ Society 70, no.22 (Jun 2016): 153–157.https://doi.org/10.18473/lepi.70i2.a11Geerat J. Vermeij On Escalation, Annual Review of Earth and Planetary Sciences 41, no.11 (May 2013): 1–19.https://doi.org/10.1146/annurev-earth-050212-124123Evan C. Lampert, Lee A. Dyer, M. Deane Bowers Chemical Defense Across Three Trophic Levels: Catalpa bignonioides, the Caterpillar Ceratomia catalpae, and its Endoparasitoid Cotesia congregata, Journal of Chemical Ecology 37, no.1010 (Sep 2011): 1063–1070.https://doi.org/10.1007/s10886-011-0018-1Stano Pekár, Charles Haddad Trophic strategy of ant-eating Mexcala elegans (Araneae: Salticidae): looking for evidence of evolution of prey-specialization, Journal of Arachnology 39, no.11 (Apr 2011): 133–138.https://doi.org/10.1636/Hi10-56.1 10.1007/BF00188246, CrossRef Listing of Deleted DOIs 281 (Jan 2011).https://doi.org/10.1007/BF00188246G. J. Vermeij, R. K. Grosberg The Great Divergence: When Did Diversity on Land Exceed That in the Sea?, Integrative and Comparative Biology 50, no.44 (Jul 2010): 675–682.https://doi.org/10.1093/icb/icq078Sarah E. Diamond, Joel G. Kingsolver Fitness consequences of host plant choice: a field experiment, Oikos 119, no.33 (Mar 2010): 542–550.https://doi.org/10.1111/j.1600-0706.2009.17242.xRUAN VELDTMAN, MELODIE A. McGEOCH, CLARKE H. SCHOLTZ Can life-history and defence traits predict the population dynamics and natural enemy responses of insect herbivores?, Ecological Entomology 32, no.66 (Dec 2007): 662–673.https://doi.org/10.1111/j.1365-2311.2007.00920.xR. Veldtman, M.A. McGeoch, C.H. Scholtz Fine-scale abundance and distribution of wild silk moth pupae, Bulletin of Entomological Research 97, no.0101 (Feb 2007): 15.https://doi.org/10.1017/S0007485307004762Hisashi Ômura, Keiichi Honda, Paul Feeny From Terpenoids to Aliphatic Acids: Further Evidence for Late-Instar Switch in Osmeterial Defense as a Characteristic Trait of Swallowtail Butterflies in the Tribe Papilionini, Journal of Chemical Ecology 32, no.99 (Aug 2006): 1999–2012.https://doi.org/10.1007/s10886-006-9124-x Catherine R. Darst , Pablo A. Menéndez‐Guerrero , Luis A. Coloma , and David C. Cannatella Evolution of Dietary Specialization and Chemical Defense in Poison Frogs (Dendrobatidae): A Comparative Analysis. C. R. Darst et al., The American Naturalist 165, no.11 (Jul 2015): 56–69.https://doi.org/10.1086/426599Grant L. Gentry, Lee A. Dyer ON THE CONDITIONAL NATURE OF NEOTROPICAL CATERPILLAR DEFENSES AGAINST THEIR NATURAL ENEMIES, Ecology 83, no.1111 (Nov 2002): 3108–3119.https://doi.org/10.1890/0012-9658(2002)083[3108:OTCNON]2.0.CO;2Nancy E. Stamp, M. Deane Bowers Foraging behaviour of caterpillars given a choice of plant genotypes in the presence of insect predators, Ecological Entomology 25, no.44 (Oct 2008): 486–492.https://doi.org/10.1046/j.1365-2311.2000.00282.x Crespi, Sandoval Phylogenetic evidence for the evolution of ecological specialization in Timema walking-sticks, Journal of Evolutionary Biology 13, no.22 (Mar 2000): 249–262.https://doi.org/10.1046/j.1420-9101.2000.00164.xMark D. Camara A RECENT HOST RANGE EXPANSION IN JUNONIA COENIA HÜBNER (NYMPHALIDAE): OVIPOSITION PREFERENCE, SURVIVAL, GROWTH, AND CHEMICAL DEFENSE, Evolution 51, no.33 (May 2017): 873–884.https://doi.org/10.1111/j.1558-5646.1997.tb03669.xNaomi Cappuccino, Hans Damman, Jean-François Dubuc Spatial Behavior and Temporal Dynamics of Outbreak and Nonoutbreak Species, (Jan 1995): 65–82.https://doi.org/10.1016/B978-012159270-7/50005-1 Evolution of Host Range, (Jan 1994): 258–287.https://doi.org/10.1007/978-0-585-30455-7_9Lee A. Dyer, Ted Floyd Determinants of predation on phytophagous insects: the importance of diet breadth, Oecologia 96, no.44 (Dec 1993): 575–582.https://doi.org/10.1007/BF00320516Nancy E. Stamp Relative susceptibility to predation of two species of caterpillar on plantain, Oecologia 92, no.11 (Jan 1992): 124–129.https://doi.org/10.1007/BF00317272Jack C. Schultz Factoring Natural Enemies into Plant Tissue Availability to Herbivores, (Jan 1992): 175–197.https://doi.org/10.1016/B978-0-08-091881-5.50010-4J. Mark Scriber, Robert C. Lederhouse The Thermal Environment as a Resource Dictating Geographic Patterns of Feeding Specialization of Insect Herbivores, (Jan 1992): 429–466.https://doi.org/10.1016/B978-0-08-091881-5.50017-7PAUL FEENY The Evolution of Chemical Ecology: Contributions from the Study of Herbivorous Insects, (Jan 1992): 1–44.https://doi.org/10.1016/B978-0-08-092545-5.50006-7E. A. Bernays Host range in phytophagous insects: the potential role of generalist predators, Evolutionary Ecology 3, no.44 (Oct 1989): 299–311.https://doi.org/10.1007/BF02285261E. A. Bernays, M. L. Cornelius Generalist caterpillar prey are more palatable than specialists for the generalist predator Iridomyrmex humilis, Oecologia 79, no.33 (Aug 2013): 427–430.https://doi.org/10.1007/BF00384324E. A. Bernays Host specificity in phytophagous insects: selection pressure from generalist predators, Entomologia Experimentalis et Applicata 49, no.1-21-2 (Apr 2011): 131–140.https://doi.org/10.1111/j.1570-7458.1988.tb02484.xJ. MARK SCRIBER Tale of the Tiger: Beringial Biogeography, Binomial Classification, and Breakfast Choices in the Papilio glaucus Complex of Butterflies, (Jan 1988): 241–301.https://doi.org/10.1016/B978-0-12-656855-4.50012-7E. Simon Lawrence Evidence for search image in blackbirds Turdus merula L.: long-term learning, Animal Behaviour 33, no.44 (Nov 1985): 1301–1309.https://doi.org/10.1016/S0003-3472(85)80190-1M. J. JEFFRIES, J. H. LAWTON Enemy free space and the structure of ecological communities, Biological Journal of the Linnean Society 23, no.44 (Jan 2008): 269–286.https://doi.org/10.1111/j.1095-8312.1984.tb00145.xA.I. Robertson, J.S. Lucas Food choice, feeding rates, and the turnover of macrophyte biomass by a surf-zone inhabiting amphipod, Journal of Experimental Marine Biology and Ecology 72, no.22 (Oct 1983): 99–124.https://doi.org/10.1016/0022-0981(83)90138-7PETER W. PRICE Hypotheses on Organization and Evolution in Herbivorous Insect Communities, (Jan 1983): 559–596.https://doi.org/10.1016/B978-0-12-209160-5.50025-8 Peter R. Atsatt Lycaenid Butterflies and Ants: Selection for Enemy-Free Space, The American Naturalist 118, no.55 (Oct 2015): 638–654.https://doi.org/10.1086/283859M.E. Nicotri Factors involved in herbivore food preference, Journal of Experimental Marine Biology and Ecology 42, no.11 (Jan 1980): 13–26.https://doi.org/10.1016/0022-0981(80)90163-XAnthony Joern Feeding patterns in grasshoppers (Orthoptera: Acrididae): Factors influencing diet specialization, Oecologia 38, no.33 (Jan 1979): 325–347.https://doi.org/10.1007/BF00345192Daniel Otte Plant preference and plant succession, Oecologia 18, no.22 (Jun 1975): 129–144.https://doi.org/10.1007/BF00348094Hubert Markl INSECT BEHAVIOR: FUNCTIONS AND MECHANISMS, (Jan 1974): 3–148.https://doi.org/10.1016/B978-0-12-591603-5.50008-5Edmund Nowacki, George R. Waller A Study on the Origin and Protective Function of Alkaloids in Plants, Flora 162, no.1-21-2 (Jan 1973): 108–117.https://doi.org/10.1016/S0367-2530(17)31694-8Robert I. Krieger, Paul P. Feeny, Christopher F. Wilkinson Detoxication Enzymes in the Guts of Caterpillars: An Evolutionary Answer to Plant Defenses?, Science 172, no.39833983 (May 1971): 579–581.https://doi.org/10.1126/science.172.3983.579V.G. DETHIER Chemical Interactions between Plants and Insects, (Jan 1970): 83–102.https://doi.org/10.1016/B978-0-12-654750-4.50011-6H. Klomp The Dynamics of a Field Population of the Pine Looper, Bupalus piniarius L.(Lep., Geom.), (Jan 1966): 207–305.https://doi.org/10.1016/S0065-2504(08)60312-8Paul R. Ehrlich, Peter H. Raven BUTTERFLIES AND PLANTS: A STUDY IN COEVOLUTION, Evolution 18, no.44 (May 2017): 586–608.https://doi.org/10.1111/j.1558-5646.1964.tb01674.xL. M. Cook FOOD-PLANT SPECIALIZATION IN THE MOTH PANAXIA DOMINULA L., Evolution 15, no.44 (May 2017): 478–485.https://doi.org/10.1111/j.1558-5646.1961.tb03178.xLincoln P. Brower SPECIATION IN BUTTERFLIES OF THE PAPILIO GLAUCUS GROUP. II. ECOLOGICAL RELATIONSHIPS AND INTERSPECIFIC SEXUAL BEHAVIOR, Evolution 13, no.22 (May 2017): 212–228.https://doi.org/10.1111/j.1558-5646.1959.tb03006.x
Referência(s)