Carbon nanotubes in emulsion-templated porous polymers: Polymer nanoparticles, sulfonation, and conductivity

2013; Wiley; Volume: 51; Issue: 20 Linguagem: Inglês

10.1002/pola.26851

ISSN

1099-0518

Autores

Noa Cohen, Dikla Cohen Samoocha, Dganit David, Michael S. Silverstein,

Tópico(s)

Polymer composites and self-healing

Resumo

Journal of Polymer Science Part A: Polymer ChemistryVolume 51, Issue 20 p. 4369-4377 Article Carbon nanotubes in emulsion-templated porous polymers: Polymer nanoparticles, sulfonation, and conductivity Noa Cohen, Noa Cohen Department of Materials Science and Engineering, Technion, Israel Institute of Technology, Haifa, 32000 IsraelSearch for more papers by this authorDikla Cohen Samoocha, Dikla Cohen Samoocha Department of Materials Science and Engineering, Technion, Israel Institute of Technology, Haifa, 32000 IsraelSearch for more papers by this authorDganit David, Dganit David Department of Materials Science and Engineering, Technion, Israel Institute of Technology, Haifa, 32000 IsraelSearch for more papers by this authorMichael S. Silverstein, Corresponding Author Michael S. Silverstein Department of Materials Science and Engineering, Technion, Israel Institute of Technology, Haifa, 32000 IsraelCorrespondence to: M. S. Silverstein (E-mail: [email protected])Search for more papers by this author Noa Cohen, Noa Cohen Department of Materials Science and Engineering, Technion, Israel Institute of Technology, Haifa, 32000 IsraelSearch for more papers by this authorDikla Cohen Samoocha, Dikla Cohen Samoocha Department of Materials Science and Engineering, Technion, Israel Institute of Technology, Haifa, 32000 IsraelSearch for more papers by this authorDganit David, Dganit David Department of Materials Science and Engineering, Technion, Israel Institute of Technology, Haifa, 32000 IsraelSearch for more papers by this authorMichael S. Silverstein, Corresponding Author Michael S. Silverstein Department of Materials Science and Engineering, Technion, Israel Institute of Technology, Haifa, 32000 IsraelCorrespondence to: M. S. Silverstein (E-mail: [email protected])Search for more papers by this author First published: 27 July 2013 https://doi.org/10.1002/pola.26851Citations: 26Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat ABSTRACT Sulfonated polymers are of interest for ion exchange resins, reaction supports, and membranes for separation, filtration, fuel cells, and electrochemical devices. Sulfonic groups have been introduced into polystyrene (PS) through exposure to sulfuric acid, and carbon nanotubes (CNTs) have been added to polymers to enhance proton conductivity without creating an electronic percolation pathway. PolyHIPEs, emulsion-templated porous polymers with highly interconnected hierarchical open-cell porous structures, are synthesized through polymerization in the external phases of high internal phase emulsions (HIPEs). In this article, the synthesis of PS-based CNT-filled polyHIPEs, their structure, sulfonation, and conductivity are described. Adding CNT dispersions to the HIPEs produced polymer nanoparticle–covered polyHIPEs from polymerization within the water-soluble surfactant micelles in the internal aqueous phase droplets. The CNTs migrated from the HIPE's aqueous phase droplets into the HIPE's organic phase and formed interconnected bundles within the polyHIPE walls, reflecting a reduction in the surfactant's ability to disperse the CNTs. The water adsorption in the hygroscopic sulfonated polyHIPEs increased the conductivity by several orders of magnitude. The conductivity of the sulfonated polyHIPE containing CNTs was more than an order of magnitude greater than that of the sulfonated polyHIPEs with no CNTs. The CNTs act as "bridges," enhancing the connection between existing conductive pathways. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 4369–4377 REFERENCES AND NOTES 1S. Matsumura, A. R. Hill, Macromolecules 2008, 41, 277–280. 2N. R. Cameron, D. C. Sherrington, I. Ando, H. Kurosu, J. Mater. Chem. 1996, 6, 719–726. 3M. Ottens, G. Leene, A. Beenackers, N. Cameron, D. C. Sherrington, Ind. Eng. Chem. Res. 2000, 39, 259–266. 4C. H. Park, C. H. Lee, M. D. Guiver, Y. M. Lee, Prog. Polym. Sci. 2011, 36, 1443–1498. 5S. Bose, T. Kuila, T. X. H. Nguyen, N. H. Kim, K.-T. Lau, J. H. Lee, Prog. Polym. Sci. 2011, 36, 813–843. 6C. Marestin, G. Gebel, O. Diat, R. Mercier, Adv. Polym. Sci. 2008, 216, 185–258. 7G. Maier, J. Meier-Haack, Adv. Polym. Sci. 2008, 216, 1–62. 8A. J. B. de Oliveira, A. P. de Aguiar, M. R. M. P. de Aguiar, L. C. de Santa Maria, Mater. Lett. 2005, 59, 1089–1094. 9G. Couture, A. Alaaeddine, F. Boschet, B. Ameduri, Prog. Polym. Sci. 2011, 36, 1521–1557. 10C.-H. Ma, T. L. Yu, H.-L. Lin, Y.-T. Huang, Y.-L. Chen, U. S. Jeng, Y.-H. Lai, Y.-S. Sun, Polymer 2009, 50, 1764–1777. 11Q. Li, J. O. Jensen, R. F. Savinell, N. J. Bjerrum, Prog. Polym. Sci. 2009, 34, 449–477. 12T. Xu, D. Wu, L. Wu, Prog. Polym. Sci. 2008, 33, 894–915. 13N. W. DeLuca, Y. A. Elabd, J. Polym. Sci. B: Polym. Phys. 2006, 44, 2201–2225. 14J. Rajan Premkumar, R. Ramaraj, Chem. Commun. 1997, 343–344. 15P. Choi, N. H. Jalani, J. Polym. Sci. B: Polym. Phys. 2006, 44, 2183–2200. 16C. del Rio, J. R. Jurado, Polymer 2005, 46, 3975–3985. 17A. Jaqueline, A. Palermo, Mater. Lett. 2005, 59, 1089–1094. 18N. G. Sahoo, S. Rana, J. W. Cho, L. Li, S. H. Chan, Prog. Polym. Sci. 2010, 35, 837–867. 19Z. Spitalsky, D. Tasis, K. Papagelis, C. Galiotis, Prog. Polym. Sci. 2010, 35, 357–401. 20P. Bondavalli, P. Legagneux, D. Pribat, Sens. Actuators B 2009, 140, 304–318. 21W. Bauhofer, J. Z. Kovacs, Compos. Sci. Technol. 2009, 69, 1486–1498. 22X.-L. Xie, Y.-W. Mai, X.-P. Zhou, Mater. Sci. Eng. R Rep. 2005, 49, 89–112. 23F. Barroso-Bujans, Macromol. Rapid Commun. 2008, 29, 234–238. 24J. Pozuelo, E. Riande, Macromolecules 2006, 39, 8862–8866. 25L. Chuenchom, R. Kraehnert, B. M. Smarsly, Soft Matter 2012, 8, 10801–10812. 26R. Dawson, A. I. Cooper, D. J. Adams, Prog. Polym. Sci. 2012, 37, 530–563. 27D. Wu, F. Xu, B. Sun, R. Fu, H. He, K. Matyjaszewski, Chem. Rev. 2012, 112, 3959–4015. 28M. T. Gokmen, F. E. Du Prez, Prog. Polym. Sci. 2012, 37, 365–405. 29K. J. Lissant, J. Colloid Interface Sci. 1966, 22, 462–468. 30K. J. Lissant, B. W. Peace, S. H. Wu, K. G. Mayhan, J. Colloid Interface Sci. 1974, 47, 416–423. 31D. Barby, Z. Haq, (Lever Brothers Co.). U.S. Patent 4,522,953, June 11, 1985. 32J. M. Williams, Langmuir 1988, 4, 44–49. 33N. R. Cameron, P. Krajnc, M. S. Silverstein, In Porous Polymers; M. S. Silverstein, N. R. Cameron, M. A. Hillmyer, Eds.; Wiley: Hoboken, NJ, 2011; Chapter 4, pp 119–172. 34N. R. Cameron, D. C. Sherrington, Adv. Polym. Sci. 1996, 126, 163–214. 35M. S. Silverstein, Prog. Polym. Sci., in press; DOI: 10.1016/j.progpolymsci.2013.07.003. 36M. S. Silverstein, H. Tai, A. Sergienko, Y. Lumelsky, S. Pavlovsky, Polymer 2005, 46, 6682–6694. 37O. Kulygin, M. S. Silverstein, Soft Matter 2007, 2, 1525–1529. 38A. Y. Sergienko, H. Tai, M. Narkis, M. S. Silverstein, J. Appl. Polym. Sci. 2004, 94, 2233–2239. 39S. Livshin, M. S. Silverstein, Macromolecules 2007, 40, 6349–6354. 40S. Livshin, M. S. Silverstein, Macromolecules 2008, 41, 3930–3938. 41I. Gurevitch, M. S. Silverstein, Soft Matter 2012, 8, 10378–10387. 42Y. Lumelsky, J. Zoldan, S. Levenberg, M. S. Silverstein, Macromolecules 2008, 41, 1469–1474. 43Y. Lumelsky, I. Lalush-Michael, S. Levenberg, M. S. Silverstein, J. Polym. Sci. A: Polym. Chem. 2009, 47, 7043–7053. 44D. David, M. S. Silverstein, J. Polym. Sci. A: Polym. Chem. 2009, 47, 5806–5814. 45R. S. Moglia, J. L. Holm, N. A. Sears, C. J. Wilson, D. M. Harrison, E. Cosgriff-Hernandez, Biomacromolecules 2011, 12, 3621–3628. 46S. Caldwell, D. W. Johnson, M. P. Didsbury, B. A. Murray, J. J. Wu, S. A. Przyborski, N. R. Cameron, Soft Matter 2012, 8, 10344–10351. 47J. Normatov, M. S. Silverstein, Polymer 2007, 48, 6648–6655. 48J. Normatov, M. S. Silverstein, J. Polym. Sci. A: Polym. Chem. 2008, 46, 2357–2366. 49J. Normatov, M. S. Silverstein, Chem. Mater. 2008, 20, 1571–1577. 50A. Menner, R. Powell, A. Bismarck, Soft Matter 2006, 4, 337–342. 51K. Haibach, A. Menner, R. Powell, A. Bismarck, Polymer 2006, 47, 4513–4519. 52A. Menner, K. Haibach, R. Powell, A. Bismarck, Polymer 2006, 47, 7628–7635. 53H. Tai, A. Sergienko, M. S. Silverstein, Polymer 2001, 42, 4473–4482. 54A. Desforges, R. Backov, H. Deleuze, O. Mondain-Monval, Adv. Funct. Mater. 2005, 15, 1689–1695. 55E. Ruckenstein, Colloid Polym. Sci. 1989, 267, 792–797. 56E. Ruckenstein, J. S. Park, J. Polym. Sci. Part C: Polym. Lett. 1988, 26, 529–536. 57T. Gitli, M. S. Silverstein, Soft Matter 2008, 4, 2475–2485. 58N. Cohen, M. S. Silverstein, Macromolecules 2012, 45, 1612–1621. 59I. Gurevitch, M. S. Silverstein, Macromolecules 2012, 45, 6450–6456. 60S. Kovačič, K. Jeřabek, P. Krajnc, Macromol. Chem. Phys. 2011, 212, 2151–2158. 61H. Zhang, G. C. Hardy, Y. Z. Khimyak, M. J. Rosseinsky, A. I. Cooper, Chem. Mater. 2004, 16, 4245–4256. 62H. Zhang, G. C. Hardy, M. J. Rosseinsky, A. I. Cooper, Adv. Mater. 2003, 15, 78–81. 63F. Carn, A. Colin, M. F. Achard, H. Deleuze, Z. Saadi, R. Backov, Adv. Mater. 2004, 16, 140–144. 64F. Carn, A. Colin, M.-F. Achard, H. Deleuze, E. Sellier, M. Birot, R. Backov, J. Mater. Chem. 2004, 14, 1370–1376. 65N. Brun, S. R. S. Prabaharan, C. Surcin, M. Morcrette, H. Deleuze, M. Birot, O. Babot, M.-F. Achard, R. Backov, J. Phys. Chem. C 2011, 116, 1408–1421. 66N. Brun, S. R. S. Prabaharan, M. Morcrette, C. Sanchez, G. Pecastaings, A. Derre, A. Soum, H. Deleuze, M. Birot, R. Backov, Adv. Funct. Mater. 2009, 19, 3136–3145. 67N. Cohen, M. S. Silverstein, Polymer 2011, 52, 282–287. 68A. Menner, R. Verdejo, M. Shaffer, A. Bismarck, Langmuir 2007, 23, 2398–2403. 69M. S. P. Shaffer, K. Koziol, Chem. Commun. 2002, 2074–2075. 70A. Menner, M. Salgueiro, M. S. P. Shaffer, A. Bismarck, J. Polym. Sci. Part A: Polym. Chem. 2008, 46, 5708–5714. 71M. C. Hermant, M. Verhulst, A. V. Kyrylyuk, B. Klumperman, C. E. Koning, Compos. Sci. Technol. 2009, 69, 656–662. 72M. C. Hermant, B. Klumperman, C. E. Koning, Chem. Commun. 2009, 2738–2740. 73 The Merck Index, 10th ed.; M. Windholz, Ed.; Merck and Co.: Rahway, NJ, 1983; p 313. 74Q. Zhang, J.-Q. Huang, W.-Z. Qian, Y.-Y. Zhang, F. Wei, Small 2013, 9, 1237–1265. 75D. R. Morris, X. Sun, J. Appl. Polym. Sci. 1993, 50, 1445–1452. Citing Literature Volume51, Issue20October 2013Pages 4369-4377 ReferencesRelatedInformation

Referência(s)