ICI 204,636 (SEROQUEL™): A Dibenzothiazepine Atypical Antipsychotic. Review of Preclinical Pharmacology and Highlights of Phase II Clinical Trials

1995; Wiley; Volume: 1; Issue: 1 Linguagem: Inglês

10.1111/j.1527-3458.1995.tb00276.x

ISSN

1527-3458

Autores

Jeffrey M. Goldstein, Lisa A. Arvanitis,

Tópico(s)

Neuroscience and Neuropharmacology Research

Resumo

CNS Drug ReviewsVolume 1, Issue 1 p. 50-73 ICI 204,636 (SEROQUEL™): A Dibenzothiazepine Atypical Antipsychotic. Review of Preclinical Pharmacology and Highlights of Phase II Clinical Trials Jeffrey M. Goldstein, Corresponding Author Jeffrey M. Goldstein CNS Biomedical Research, ZENECA Pharmaceuticals, Wilmington, Delaware, USAAddress correspondence and reprint requests to: Dr. Jeffrey M. Goldstein, at CNS Biomedical Research, ZENECA Pharmaceuticals, 1800 Concord Pike, Wilmington, DE 19850-5437, USA. Fax: (302) 886-2766.Search for more papers by this authorLisa A. Arvanitis, Lisa A. Arvanitis CNS Clinical Research, ZENECA Pharmaceuticals, Wilmington, Delaware, USA.Search for more papers by this author Jeffrey M. Goldstein, Corresponding Author Jeffrey M. Goldstein CNS Biomedical Research, ZENECA Pharmaceuticals, Wilmington, Delaware, USAAddress correspondence and reprint requests to: Dr. Jeffrey M. Goldstein, at CNS Biomedical Research, ZENECA Pharmaceuticals, 1800 Concord Pike, Wilmington, DE 19850-5437, USA. Fax: (302) 886-2766.Search for more papers by this authorLisa A. Arvanitis, Lisa A. Arvanitis CNS Clinical Research, ZENECA Pharmaceuticals, Wilmington, Delaware, USA.Search for more papers by this author First published: March 1995 https://doi.org/10.1111/j.1527-3458.1995.tb00276.xCitations: 36 SEROQUEL™ is the trade name of ZENECA Ltd. for ICI 204,636. AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat References 1 Anden NE, Butcher SG, Corrodi H, Fuxe K, Ungerstedt U. Receptor activity and turnover of dopamine and noradrenaline after neuroleptics. Eur J Pharmacol 1970; 11: 303–314. 10.1016/0014-2999(70)90006-3 CASPubMedWeb of Science®Google Scholar 2 Billard W, Ruperto V, Crosby G, Iorio LC, Barnett A. Characterization of the binding of 3H-SCH23390, a selective D-1 receptor antagonist ligand, in rat striatum. Life Sci 1984; 35: 1885–1893. 10.1016/0024-3205(84)90540-X CASPubMedWeb of Science®Google Scholar 3 Bunney BS. The electrophysiological pharmacology of midbrain dopaminergic systems. In: AS Horn, J Korf, BHC Westerink, eds. The Neurobiology of Dopamine. New York : Academic Press, 1979. Google Scholar 4 Bunney BS, Aghajanian GK. The effects of antipsychotic drugs on the firing rate of dopaminergic neurons: a reappraisal. In: G Sedvall, B Uvnas, Y Zotterman, eds. Antipsychotic Drugs, Pharmacodynamics and Pharmacoklnetics. New York : Pergamon, 1975. Google Scholar 5 Bunney BS, Walters JR, Roth RH, Aghajanian OK. Dopaminergic neurons: effect of antipsychotic drugs and amphetamine on single unit activity. J Pharmacol Exp Ther 1973; 185: 560–571. CASPubMedWeb of Science®Google Scholar 6 Casey DE. What makes a neuroleptic atypical? In: HY Meltzer, ed. Novel Antipsychotic Drugs. New York : Raven Press, 1992. Google Scholar 7 Casey D, Gerlach J, Christifson E. Dopamine, acetylcholine and GABA effects in acute dystonia in primates. Psychopharmacology 1980; 70: 83–87. 10.1007/BF00432375 CASPubMedWeb of Science®Google Scholar 8 Chiodo LA, Bunney BS. Typical and atypical neuroleptics: differential effects of chronic administration on the activity of A9 and A10 midbrain dopaminergic neurons. J Neurosci 1983; 3: 1607–1619. 10.1523/JNEUROSCI.03-08-01607.1983 Google Scholar 9 Ellinwood EH, Sudilovsky A. Chronic amphetamine intoxication: behavioral model of psychosis. In: JO Cole, AM Freedman, AJ Friedhoff, eds. Psychopathology and Psychopharmacology. Baltimore : The Johns Hopkins University Press, 1973. Google Scholar 10 Fields JZ, Reisine TD, Yamamura HI. Biochemical demonstration of dopaminergic receptors in rat and human brain using 3H-spiroperidol. Brain Res 1977; 136: 578–584. 10.1016/0006-8993(77)90084-1 CASPubMedWeb of Science®Google Scholar 11 Goldstein JM, Litwin LC, Sutton EB, Malick JB. D-2 dopamine antagonist-like effects of SCH23390 on A9 and A10 dopamine neurons. Life Sciences 1987; 40: 1039–1044. 10.1016/0024-3205(87)90565-0 CASPubMedWeb of Science®Google Scholar 12 Goldstein JM, Litwin LC. Spontaneous activity of A9 and A10 dopamine neurons after acute and chronic administration of the selective D-1 antagonist SCH23390. Ear J Pharmacol 1988; 155: 175–180. 10.1016/0014-2999(88)90419-0 CASPubMedWeb of Science®Google Scholar 13 Goldstein JM, Litwin LC, Sutton EB, Malick JB. Effects of ICI 169,369, a selective 5HT2 antagonist, in electrophysiological tests predictive of antipsychotic activity. J Pharmacol Exp Ther 1989; 249: 673–680. CASPubMedWeb of Science®Google Scholar 14 Goldstein JM, Litwin LC, Sutton EB, Malick JB. SEROQUEL: electrophysiological profile of a potential atypical antipsychotic. Psychopharmacology 1993; 112: 293–298. 10.1007/BF02244924 CASPubMedWeb of Science®Google Scholar 15 Greengrass D, Brenner EW. Binding characteristics of 3H-prazosin to rat brain alpha-adrenergic receptors. Ear J Pharmacol 1979; 55: 323–326. 10.1016/0014-2999(79)90202-4 CASPubMedWeb of Science®Google Scholar 16 Hall MD, Mesticawy S, Emerit MB, Pitchart L, Hammon M, Gozlan HJ. 3H-8-hydroxy-2-(di-n-propylamino)tetralin binding to pre- and postsynaptic 5-hydroxytryptamine sites in various regions of rat brain. J Neurochem 1985; 44: 1685–1696. 10.1111/j.1471-4159.1985.tb07155.x CASPubMedWeb of Science®Google Scholar 17 Hirsch S, Arvanitis L, Miler B, Smith A, SEROQUEL Study Group. A Multicentre, Double-blind, Placebo-controlled Comparison of Low and High Dosage Regimens of SEROQUEL in the Treatment of Hospitalised Patients with Acute Exacerbation of Chronic and Subchronic Schizophrenia. European Neuropsychopharmacology 1994; 4: 385–386 Abs P-3-27. Abstracts of the 7th Congress of the European College of Neuropsychopharmacology, Jerusalem, 16–21 October 1994. 10.1016/0924-977X(94)90211-9 CASGoogle Scholar 18 Howe JR, Yaksh TL. Characteristics of 3H-rauwolscine binding to alpha-2-adrenoceptors sites in the lumbar spinal cord of the cat: comparison to such binding in the cat frontal cerebral cortex. Brain Research 1986; 368: 87–100. 10.1016/0006-8993(86)91045-0 CASPubMedWeb of Science®Google Scholar 19 Kane JM. Treatment of schizophrenia. Schizophrenia Bull 1987; 13: 133–156. 10.1093/schbul/13.1.133 CASPubMedWeb of Science®Google Scholar 20 Kane JM, Honigfeld G, Singer J, et al. Clozapine of the treatment-resistant schizophrenic. Arch Gen Psychiat 1988; 45: 789–796. 10.1001/archpsyc.1988.01800330013001 PubMedWeb of Science®Google Scholar 21 Kinnard WT, Carr CT. A preliminary procedure for the evaluation of central nervous system depressants. J Pharmacol Exp Ther 1957; 128: 354–361. Google Scholar 22 Klawans HL. The pharmacology of tardive dyskinesia. Am J Psychiat 1973; 130: 82–86. 10.1176/ajp.130.1.82 PubMedWeb of Science®Google Scholar 23 Leysen JE, Niemegeers GJE, Van Nueten JH, Laduron PM. 3H-Ketanserin (R41468), a selective 3H-ligand for serotonin2 receptor binding sites. Binding properties, brain distribution, and functional role. Mol Pharmacol 1982; 21: 301–314. CASPubMedWeb of Science®Google Scholar 24 Lieberman JA. Understanding the mechanism of action of atypical antipsychotic drugs. Br J Psychiat 1993; 163(Suppl 22): 7–18. 10.1192/S0007125000292544 Web of Science®Google Scholar 25 Liebman J, Neale R. Neuroleptic-induced acute dyskinesias in squirrel monkeys: Correlation with propensity to cause extrapyramidal side effects. Psychopharmacology 1980; 68: 25–29. 10.1007/BF00426645 CASPubMedWeb of Science®Google Scholar 26 Link C, Smith A, Miller B, Ryan J, SEROQUEL Study Group. A Multicentre, Double-blind, Controlled Comparison of SEROQUEL and Chlorpromazine in the Treatment of Hospitalised Patients with Acute Exacerbation of Subchronic and Chronic Schizophrenia. European Neuropsychopharmacology 1994; 4: 385 Abs P-3-26. Abstracts of the 7th Congress on the European College of Neuropsychopharmacology, Jerusalem, 16–21 October 1994. 10.1016/0924-977X(94)90212-7 Google Scholar 27 Malick JB, Barnett A. Central versus peripheral anticholinergic activity as assessed by two in vivo procedures in mice. J Pharm Sci 1975; 64: 1066–1068. 10.1002/jps.2600640650 CASPubMedWeb of Science®Google Scholar 28 Martres MP, Costentin J, Baudry M, Marcais H, Protais P, Schwartz JC. Long-term changes in the sensitivity of pre- and post-synaptic dopamine receptors in mouse striatum evidenced by behavioral and biochemical studies. Brain Research 1977; 136: 317–337. 10.1016/0006-8993(77)90806-X CASWeb of Science®Google Scholar 29 Meiners BA, Salama AI. Enhancement of benzodiazepine and GABA binding by the novel anxiolytic tracazolate. Ear J Pharmacol 1982; 78: 315–322. 10.1016/0014-2999(82)90033-4 CASPubMedWeb of Science®Google Scholar 30 Meltzer HY, Bastani B, Kwon KY, et al. A prospective study of clozapine in treatment-resistant patients. I. Preliminary report. Psychopharmacology 1989; 99: S68–S72. 10.1007/BF00442563 PubMedWeb of Science®Google Scholar 31 Meltzer HY, Daniels S. Fang VS. Clozapine increases rat serum prolactin levels. Life Sciences 1975; 17: 339–342. 10.1016/0024-3205(75)90482-8 CASPubMedWeb of Science®Google Scholar 32 Migler, BM, Warawa EJ, Malick JB. SEROQUEL: behavioral effects in conventional and novel tests for atypical antipsychotic drug. Psychopharmacology 1993; 112: 299–307. 10.1007/BF02244925 CASPubMedWeb of Science®Google Scholar 33 Regier, DA, Boyd JH, Burke JD, et al. One month prevalence of mental disorders in the US: based on five epidemiologic catchment area (EGA) sites. Arch Gen Psychiat 1988; 45: 977–86. 10.1001/archpsyc.1988.01800350011002 PubMedWeb of Science®Google Scholar 34 Roos BE. Effects of certain tranquilizers on the level of homovanillic acid in the corpus striatum. J Pharmacol Pharmacy 1965; 17: 820. 10.1111/j.2042-7158.1965.tb07615.x CASPubMedWeb of Science®Google Scholar 35 Sailer CF, Salama Al. Rapid automated analysis of biogenic amines and their metabolites using reverse-phase high performance liquid chromatography with electrochemical detection. J Chromatography 1984; 309: 287–298. 10.1016/0378-4347(84)80036-5 CASPubMedWeb of Science®Google Scholar 36 Sailer CF, Salama Al. 3-Methoxytyramine accumulation: effects of typical neuroleptics and various atypical compounds. Naunyn-Schmeideberg's Arch Pharmacol 1986; 334: 125–132. 10.1007/BF00505811 CASWeb of Science®Google Scholar 37 Sailer CF, Salama Al. D-1 dopamine receptor stimulation elevates plasma prolactin levels. Ear J Pharmacol 1986; 122: 139–142. 10.1016/0014-2999(86)90170-6 CASPubMedWeb of Science®Google Scholar 38 Sailer CF, Salama Al. SEROQUEL: biochemical profile of a potential atypical antipsychotic. Psychopharmacology 1993; 112: 285–292. 10.1007/BF02244923 CASPubMedWeb of Science®Google Scholar 39 Seeman P. Brain dopamine receptors. Pharmacol Rev 1980; 32: 229–313. CASPubMedWeb of Science®Google Scholar 40 Weiss B, Santelli S, Lusink G. Movement disorders induced in monkeys by chronic haloperidol treatment. Psychopharmacology 1977; 53: 289–293. 10.1007/BF00492366 CASPubMedWeb of Science®Google Scholar 41 White FJ, Wang RY. Differential effects of classical and atypical antipsychotic drugs on A9 and A10 dopamine neurons. Science 1983; 221: 1054–1057. CASPubMedGoogle Scholar 42 Yamamura HI, Snyder SH. Muscarinic cholinergic binding in rat brain. Proc Natl Acad Sci 1974; 71: 1725–1729. 10.1073/pnas.71.5.1725 CASPubMedGoogle Scholar Citing Literature Volume1, Issue1March 1995Pages 50-73 ReferencesRelatedInformation

Referência(s)
Altmetric
PlumX