Artigo Revisado por pares

Virus-Templated Assembly of Porphyrins into Light-Harvesting Nanoantennae

2010; American Chemical Society; Volume: 132; Issue: 5 Linguagem: Inglês

10.1021/ja908812b

ISSN

1943-2984

Autores

Yoon Sung Nam, Taeho Shin, Heechul Park, Andrew P. Magyar, Katherine Choi, Georg E. Fantner, Keith A. Nelson, Angela M. Belcher,

Tópico(s)

Nanopore and Nanochannel Transport Studies

Resumo

Biological molecules can be used as versatile templates for assembling nanoscale materials because of their unique structures and chemical diversities. Supramolecular organization of molecular pigments, as is found in the natural light-harvesting antenna, has drawn attention for its potential applications to sensors, photocatalytic systems, and photonic devices. Here we show the arrangement of molecular pigments into a one-dimensional light-harvesting antenna using M13 viruses as scaffolds. Chemical grafting of zinc porphyrins to M13 viruses induces distinctive spectroscopic changes, including fluorescence quenching, the extensive band broadening and small red shift of their absorption spectrum, and the shortened lifetime of the excited states. Based on these optical signatures we suggest a hypothetical model to explain the energy transfer occurring in the supramolecular porphyrin structures templated with the virus. We expect that further genetic engineering of M13 viruses can allow us to coassemble other functional materials (e.g., catalysts and electron transfer mediators) with pigments, implying potential applications to photochemical devices.

Referência(s)