Artigo Acesso aberto Revisado por pares

Hemagglutinating Virus of Japan (HVJ) Envelope Vector as a Versatile Gene Delivery System

2002; Elsevier BV; Volume: 6; Issue: 2 Linguagem: Inglês

10.1006/mthe.2002.0647

ISSN

1525-0024

Autores

Yasufumi Kaneda, Toshihiro Nakajima, Tomoyuki Nishikawa, Seiji Yamamoto, Hiroyuki Ikegami, Naho Suzuki, Hitomi Nakamura, Ryuichi Morishita, Hitoshi Kotani,

Tópico(s)

Viral gastroenteritis research and epidemiology

Resumo

We have developed a simple method for converting the lipid envelope of an inactivated virus to a gene transfer vector. Hemagglutinating virus of Japan (HVJ; Sendai virus) envelope vector was constructed by incorporating plasmid DNA into inactivated HVJ particles. This HVJ envelope vector introduced plasmid DNA efficiently and rapidly into various cell lines, including cancer cells and several types of primary cell culture. Efficiency of gene transfer was greatly enhanced by protamine sulfate and centrifugation. Fluorescein isothiocyanate-labeled oligodeoxynucleotides (FITC-ODN) were also delivered to cells at > 95% efficiency. When HVJ envelope vector was injected into organs directly, reporter gene expression was observed in organs including liver, brain, skin, uterus, tumor masses, lung, and eye. When HVJ envelope vector containing luciferase gene was injected into mouse tail vein, luciferase gene expression was detected primarily in spleen. FITC-ODN were also delivered to spleen cells by intravenous injection of HVJ envelope. These results suggest that HVJ envelope vector will be useful for both ex vivo and in vivo gene therapy experiments. We have developed a simple method for converting the lipid envelope of an inactivated virus to a gene transfer vector. Hemagglutinating virus of Japan (HVJ; Sendai virus) envelope vector was constructed by incorporating plasmid DNA into inactivated HVJ particles. This HVJ envelope vector introduced plasmid DNA efficiently and rapidly into various cell lines, including cancer cells and several types of primary cell culture. Efficiency of gene transfer was greatly enhanced by protamine sulfate and centrifugation. Fluorescein isothiocyanate-labeled oligodeoxynucleotides (FITC-ODN) were also delivered to cells at > 95% efficiency. When HVJ envelope vector was injected into organs directly, reporter gene expression was observed in organs including liver, brain, skin, uterus, tumor masses, lung, and eye. When HVJ envelope vector containing luciferase gene was injected into mouse tail vein, luciferase gene expression was detected primarily in spleen. FITC-ODN were also delivered to spleen cells by intravenous injection of HVJ envelope. These results suggest that HVJ envelope vector will be useful for both ex vivo and in vivo gene therapy experiments.

Referência(s)
Altmetric
PlumX