Adaptations to Aquatic, Arboreal, Fossorial and Cursorial Habits in Mammals. III. Fossorial Adaptations
1903; University of Chicago Press; Volume: 37; Issue: 444 Linguagem: Inglês
10.1086/278368
ISSN1537-5323
Autores Tópico(s)Morphological variations and asymmetry
ResumoPrevious articleNext article FreeAdaptations to Aquatic, Arboreal, Fossorial and Cursorial Habits in Mammals. III. Fossorial AdaptationsH. W. ShimerH. W. Shimer Search for more articles by this author PDFPDF PLUS Add to favoritesDownload CitationTrack CitationsPermissionsReprints Share onFacebookTwitterLinkedInRedditEmail SectionsMoreDetailsFiguresReferencesCited by The American Naturalist Volume 37, Number 444Dec., 1903 Published for The American Society of Naturalists Article DOIhttps://doi.org/10.1086/278368 Views: 1508Total views on this site Citations: 58Citations are reported from Crossref PDF download Crossref reports the following articles citing this article:Hao Gong, Joash B. Adajar, Léa Tessier, Shuai Li, Leno Guzman, Ying Chen, Long Qi Discrete element models for understanding the biomechanics of fossorial animals, Ecology and Evolution 12, no.99 (Sep 2022).https://doi.org/10.1002/ece3.9331Zanildo Macungo, Julien Benoit, Vincent Fernandez, Ricardo M N Araújo X-ray microcomputed and synchrotron tomographic analysis of the basicranial axis of emydopoid dicynodonts: implications for fossoriality and phylogeny, Zoological Journal of the Linnean Society 21 (Jun 2022).https://doi.org/10.1093/zoolinnean/zlac033Laura Bento Da Costa, Brigitte Senut Skeleton of Early Miocene Bathyergoides neotertiarius Stromer, 1923 (Rodentia, Mammalia) from Namibia: behavioural implication, Geodiversitas 44, no.1010 (Mar 2022).https://doi.org/10.5252/geodiversitas2022v44a10Ana Sofia QUINA, João Paulo TAVANEZ, Maria da Luz MATHIAS Genetic variation at the p53 locus of two ecologically divergent Microtus pine voles: identification of molecular markers for species assignment, Integrative Zoology 7 (Dec 2021).https://doi.org/10.1111/1749-4877.12607František Vejmělka, Jan Okrouhlík, Matěj Lövy, Gabriel Šaffa, Eviatar Nevo, Nigel Charles Bennett, Radim Šumbera Heat dissipation in subterranean rodents: the role of body region and social organisation, Scientific Reports 11, no.11 (Jan 2021).https://doi.org/10.1038/s41598-021-81404-3Dov Corenblit, Bruno Corbara, Johannes Steiger Biogeomorphological eco-evolutionary feedback between life and geomorphology: a theoretical framework using fossorial mammals, The Science of Nature 108, no.66 (Oct 2021).https://doi.org/10.1007/s00114-021-01760-yGrace K. Forker, Heiko L. Schoenfuss, Richard W. Blob, Kelly M. Diamond Bendy to the bone: Links between vertebral morphology and waterfall climbing in amphidromous gobioid fishes, Journal of Anatomy 239, no.33 (Apr 2021): 747–754.https://doi.org/10.1111/joa.13449Lucy C. Huntley, David J. Gower, Filipa L. Sampaio, Ellen S. Collins, Anjali Goswami, Anne‐Claire Fabre Intraspecific morphological variation in the shieldtail snake Rhinophis philippinus (Serpentes: Uropeltidae), with particular reference to tail‐shield and cranial 3D geometric morphometrics, Journal of Zoological Systematics and Evolutionary Research 59, no.66 (Jul 2021): 1357–1370.https://doi.org/10.1111/jzs.12505Patrick Arnold Evolution of the Mammalian Neck from Developmental, Morpho-Functional, and Paleontological Perspectives, Journal of Mammalian Evolution 28, no.22 (Jun 2020): 173–183.https://doi.org/10.1007/s10914-020-09506-9Fangyuan Mao, Chi Zhang, Cunyu Liu, Jin Meng Fossoriality and evolutionary development in two Cretaceous mammaliamorphs, Nature 592, no.78557855 (Apr 2021): 577–582.https://doi.org/10.1038/s41586-021-03433-2Néstor Toledo, Nahuel A. Muñoz, Guillermo H. Cassini Ulna of Extant Xenarthrans: Shape, Size, and Function, Journal of Mammalian Evolution 28, no.11 (Apr 2020): 35–45.https://doi.org/10.1007/s10914-020-09503-yEloy Gálvez‐López Quantifying morphological adaptations using direct measurements: The carnivoran appendicular skeleton as a case study, The Anatomical Record 304, no.33 (Jun 2020): 480–506.https://doi.org/10.1002/ar.24453Brandon M Kilbourne Differing limb functions and their potential influence upon the diversification of the mustelid hindlimb skeleton, Biological Journal of the Linnean Society 132, no.33 (Jan 2021): 685–703.https://doi.org/10.1093/biolinnean/blaa207William Corrêa Tavares, Leila Maria Pessôa Effects of size, phylogeny and locomotor habits on the pelvic and femoral morphology of South American spiny rats (Rodentia: Echimyidae), Biological Journal of the Linnean Society 131, no.44 (Nov 2020): 835–869.https://doi.org/10.1093/biolinnean/blaa150Brittany T. Brito, Jahshua F. Sanchez Tunnel Diameter as a Noninvasive Method of Detecting Pocket Gopher (Geomyidae) Occupancy, Wildlife Society Bulletin 44, no.44 (Dec 2020): 756–759.https://doi.org/10.1002/wsb.1145John N. Maina, Casmir O. Igbokwe Comparative morphometric analysis of lungs of the semifossorial giant pouched rat (Cricetomys gambianus) and the subterranean Nigerian mole rat (Cryptomys foxi), Scientific Reports 10, no.11 (Mar 2020).https://doi.org/10.1038/s41598-020-61873-8Xavier A. Jenkins, Adam C. Pritchard, Adam D. Marsh, Ben T. Kligman, Christian A. Sidor, Kaye E. Reed Using Manual Ungual Morphology to Predict Substrate Use in the Drepanosauromorpha and the Description of a New Species, Journal of Vertebrate Paleontology 40, no.55 (Oct 2020): e1810058.https://doi.org/10.1080/02724634.2020.1810058Sarah T. Mincer, Gabrielle A. Russo Substrate use drives the macroevolution of mammalian tail length diversity, Proceedings of the Royal Society B: Biological Sciences 287, no.19201920 (Feb 2020): 20192885.https://doi.org/10.1098/rspb.2019.2885P Parsi-Pour, B M Kilbourne Functional Morphology and Morphological Diversification of Hind Limb Cross-Sectional Traits in Mustelid Mammals, Integrative Organismal Biology 2, no.11 (Jan 2020).https://doi.org/10.1093/iob/obz032Neal Woodman, Alec T Wilken, Roger Powell Comparative functional skeletal morphology among three genera of shrews: implications for the evolution of locomotor behavior in the Soricinae (Eulipotyphla: Soricidae), Journal of Mammalogy 100, no.66 (Dec 2019): 1750–1764.https://doi.org/10.1093/jmammal/gyz098Brandon M. Kilbourne, John R. Hutchinson Morphological diversification of biomechanical traits: mustelid locomotor specializations and the macroevolution of long bone cross-sectional morphology, BMC Evolutionary Biology 19, no.11 (Jan 2019).https://doi.org/10.1186/s12862-019-1349-8Jan Wölfer, John A. Nyakatura Weighing homoplasy against alternative scenarios with the help of macroevolutionary modeling: A case study on limb bones of fossorial sciuromorph rodents, Ecology and Evolution 9, no.1919 (Sep 2019): 11025–11039.https://doi.org/10.1002/ece3.5592Adrian Scheidt, Jan Wölfer, John A. Nyakatura The evolution of femoral cross‐sectional properties in sciuromorph rodents: Influence of body mass and locomotor ecology, Journal of Morphology 189 (Jun 2019).https://doi.org/10.1002/jmor.21007Jan Wölfer, Eli Amson, Patrick Arnold, Léo Botton‐Divet, Anne‐Claire Fabre, Anneke H. Heteren, John A. Nyakatura Femoral morphology of sciuromorph rodents in light of scaling and locomotor ecology, Journal of Anatomy 234, no.66 (Apr 2019): 731–747.https://doi.org/10.1111/joa.12980Jan Wölfer, Patrick Arnold, John A Nyakatura Effects of scaling and locomotor ecology suggest a complex evolution of scapular morphology in sciuromorph rodents, Biological Journal of the Linnean Society 127, no.22 (Apr 2019): 175–196.https://doi.org/10.1093/biolinnean/blz042Meg L. Martin, Natalie M. Warburton, Kenny J. Travouillon, Patricia A. Fleming Mechanical similarity across ontogeny of digging muscles in an Australian marsupial ( Isoodon fusciventer ), Journal of Morphology 280, no.33 (Feb 2019): 423–435.https://doi.org/10.1002/jmor.20954Eli Amson, John A. Nyakatura The Postcranial Musculoskeletal System of Xenarthrans: Insights from over Two Centuries of Research and Future Directions, Journal of Mammalian Evolution 25, no.44 (Aug 2017): 459–484.https://doi.org/10.1007/s10914-017-9408-7Rafaela Velloso Missagia, Fernando Araujo Perini Skull morphology of the Brazilian shrew mouse Blarinomys breviceps (Akodontini; Sigmodontinae), with comparative notes on Akodontini rodents, Zoologischer Anzeiger 277 (Nov 2018): 148–161.https://doi.org/10.1016/j.jcz.2018.09.005Bader H. Alhajeri, Scott J. Steppan Ecological and Ecomorphological Specialization Are Not Associated with Diversification Rates in Muroid Rodents (Rodentia: Muroidea), Evolutionary Biology 45, no.33 (Apr 2018): 268–286.https://doi.org/10.1007/s11692-018-9449-8William Corrêa Tavares, Pedro Abi-Rezik, Hector N. Seuánez Historical and ecological influence in the evolutionary diversification of external morphology of neotropical spiny rats (Echimyidae, Rodentia), Journal of Zoological Systematics and Evolutionary Research 56, no.33 (Mar 2018): 453–465.https://doi.org/10.1111/jzs.12215Miriam Belmaker Dental microwear of small mammals as a high resolution paleohabitat proxy: opportunities and challenges, Journal of Archaeological Science: Reports 18 (Apr 2018): 824–838.https://doi.org/10.1016/j.jasrep.2018.02.034Lucas J. Legendre, Jennifer Botha-Brink Digging the compromise: investigating the link between limb bone histology and fossoriality in the aardvark ( Orycteropus afer ), PeerJ 6 (Jul 2018): e5216.https://doi.org/10.7717/peerj.5216Brandon M. Kilbourne Selective regimes and functional anatomy in the mustelid forelimb: Diversification toward specializations for climbing, digging, and swimming, Ecology and Evolution 7, no.2121 (Sep 2017): 8852–8863.https://doi.org/10.1002/ece3.3407John R. Wible, Guillermo W. Rougier Craniomandibular Anatomy of the Subterranean Meridiolestidan Necrolestes patagonensis Ameghino, 1891 (Mammalia, Cladotheria) from the Early Miocene of Patagonia, Annals of Carnegie Museum 84, no.33 (Jun 2017): 183–252.https://doi.org/10.2992/007.084.0302Collin S. VanBuren, David C. Evans Evolution and function of anterior cervical vertebral fusion in tetrapods, Biological Reviews 92, no.11 (Jan 2016): 608–626.https://doi.org/10.1111/brv.12245Caroline K. Hu, Hopi E. Hoekstra Peromyscus burrowing: A model system for behavioral evolution, Seminars in Cell & Developmental Biology 61 (Jan 2017): 107–114.https://doi.org/10.1016/j.semcdb.2016.08.001Kai He, Akio Shinohara, Kristofer M. Helgen, Mark S. Springer, Xue-Long Jiang, Kevin L. Campbell Talpid Mole Phylogeny Unites Shrew Moles and Illuminates Overlooked Cryptic Species Diversity, Molecular Biology and Evolution 34, no.11 (Oct 2016): 78–87.https://doi.org/10.1093/molbev/msw221Neal Woodman, Frank A. Stabile Functional skeletal morphology and its implications for locomotory behavior among three genera of myosoricine shrews (Mammalia: Eulipotyphla: Soricidae), Journal of Morphology 276, no.55 (Feb 2015): 550–563.https://doi.org/10.1002/jmor.20365Meng Chen, Gregory P. Wilson A multivariate approach to infer locomotor modes in Mesozoic mammals, Paleobiology 41, no.22 (Feb 2015): 280–312.https://doi.org/10.1017/pab.2014.14Neal Woodman, Frank A. Stabile Variation in the myosoricine hand skeleton and its implications for locomotory behavior (Eulipotyphla: Soricidae), Journal of Mammalogy 96, no.11 (Mar 2015): 159–171.https://doi.org/10.1093/jmammal/gyu017Carola Cañón, Daiana Mir, Ulyses F. J. Pardiñas, Enrique P. Lessa, Guillermo D'Elía A multilocus perspective on the phylogenetic relationships and diversification of rodents of the tribe Abrotrichini (Cricetidae: Sigmodontinae), Zoologica Scripta 43, no.55 (Jul 2014): 443–454.https://doi.org/10.1111/zsc.12069Neal Woodman, Sarah A. Gaffney Can they dig it? Functional morphology and semifossoriality among small-eared shrews, genus Cryptotis (Mammalia, Soricidae), Journal of Morphology 275, no.77 (Jan 2014): 745–759.https://doi.org/10.1002/jmor.20254Xuefei LU, Deyan GE, Lin XIA, Chengming HUANG, Qisen YANG Geometric morphometric study of the skull shape diversification in Sciuridae (Mammalia, Rodentia), Integrative Zoology 9, no.33 (Jun 2014): 231–245.https://doi.org/10.1111/1749-4877.12035Jacob A. Rose, Mark Sandefur, Steve Huskey, Jennifer L. Demler, Michael T. Butcher Muscle architecture and out-force potential of the thoracic limb in the eastern mole ( Scalopus aquaticus ), Journal of Morphology 274, no.1111 (Aug 2013): 1277–1287.https://doi.org/10.1002/jmor.20178Tobias Nasterlack, Aurore Canoville, Anusuya Chinsamy New insights into the biology of the Permian genus Cistecephalus (Therapsida, Dicynodontia), Journal of Vertebrate Paleontology 32, no.66 (Nov 2012): 1396–1410.https://doi.org/10.1080/02724634.2012.697410WAYNE I. L. DAVIES, SHAUN P. COLLIN, DAVID M. HUNT Molecular ecology and adaptation of visual photopigments in craniates, Molecular Ecology 21, no.1313 (May 2012): 3121–3158.https://doi.org/10.1111/j.1365-294X.2012.05617.xCecilia C. Morgan, Diego H. Verzi Carpal-metacarpal specializations for burrowing in South American octodontoid rodents, Journal of Anatomy 219, no.22 (May 2011): 167–175.https://doi.org/10.1111/j.1469-7580.2011.01391.xJustin A. Georgi, David W. Krause Postcranial axial skeleton of Simosuchus clarki (Crocodyliformes: Notosuchia) from the Late Cretaceous of Madagascar, Journal of Vertebrate Paleontology 30, no.sup1sup1 (Dec 2010): 99–121.https://doi.org/10.1080/02724634.2010.519172Aaron B. Camens Were early Tertiary monotremes really all aquatic? Inferring paleobiology and phylogeny from a depauperate fossil record, Proceedings of the National Academy of Sciences 107, no.44 (Jan 2010).https://doi.org/10.1073/pnas.0912404107Samantha S. B. Hopkins, Edward Byrd Davis Quantitative Morphological Proxies for Fossoriality in Small Mammals, Journal of Mammalogy 90, no.66 (Dec 2009): 1449–1460.https://doi.org/10.1644/08-MAMM-A-262R1.1Justine A. Salton, Eric J. Sargis Evolutionary morphology of the Tenrecoidea (Mammalia) hindlimb skeleton, Journal of Morphology 270, no.33 (Mar 2009): 367–387.https://doi.org/10.1002/jmor.10697HEIDI SCHUTZ, ROBERT P. GURALNICK Postcranial element shape and function: assessing locomotor mode in extant and extinct mustelid carnivorans, Zoological Journal of the Linnean Society 150, no.44 (Aug 2007): 895–914.https://doi.org/10.1111/j.1096-3642.2007.00303.xCarl Gans, Abbot S. Gaunt, Paul W. Webb Vertebrate Locomotion, (Jan 2011): 55–213.https://doi.org/10.1002/cphy.cp130103Kenneth D. Rose, Robert J. Emry Extraordinary fossorial adaptations in the oligocene palaeanodontsEpoicotherium andXenocranium (Mammalia), Journal of Morphology 175, no.11 (Jan 1983): 33–56.https://doi.org/10.1002/jmor.1051750105Charles A. Woods The hyoid, laryngeal and pharyngeal regions of bathyergid and other selected rodents, Journal of Morphology 147, no.22 (Oct 1975): 229–250.https://doi.org/10.1002/jmor.1051470208Jack F. Fry Musculature and innervation of the pelvis and hind limb of the mountain beaver, Journal of Morphology 109, no.22 (Sep 1961): 173–197.https://doi.org/10.1002/jmor.1051090206Thomas Howard Lewis The morphology of the pectoral girdle and anterior limb in Aplodontia, Journal of Morphology 85, no.33 (Nov 1949): 533–558.https://doi.org/10.1002/jmor.1050850308Royal Norton Chapman A study of the correlation of the pelvic structure and the habits of certain burrowing mammals, American Journal of Anatomy 25, no.22 (Mar 1919): 184–219.https://doi.org/10.1002/aja.1000250204
Referência(s)