Artigo Revisado por pares

Correlation of longitudinal velocity variation with rock fabric

1969; American Geophysical Union; Volume: 74; Issue: 20 Linguagem: Inglês

10.1029/jb074i020p04897

ISSN

2156-2202

Autores

R.E. Thill, R.J. Willard, Thomas R. Bur,

Tópico(s)

Drilling and Well Engineering

Resumo

Journal of Geophysical Research (1896-1977)Volume 74, Issue 20 p. 4897-4909 Correlation of longitudinal velocity variation with rock fabric R. E. Thill, R. E. ThillSearch for more papers by this authorR. J. Willard, R. J. WillardSearch for more papers by this authorT. R. Bur, T. R. BurSearch for more papers by this author R. E. Thill, R. E. ThillSearch for more papers by this authorR. J. Willard, R. J. WillardSearch for more papers by this authorT. R. Bur, T. R. BurSearch for more papers by this author First published: 15 September 1969 https://doi.org/10.1029/JB074i020p04897Citations: 50AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Abstract Comparisons of longitudinal (compressional) wave velocity with structural subfabrics have been made for Yule marble, Newberry Crater pumice, and Salisbury granite. Velocities were (1) measured omnidirectionally in spherical specimens by an ultrasonic pulse technique and (2) plotted and contoured on equal area nets. These contour patterns show velocity anisotropy that can be interpreted in terms of elastic symmetry. Microstructural subfabrics were determined from oriented thin sections of the specimens. Subfabrics were then displayed on equal area nets for comparison of their symmetries with those of the longitudinal wave velocities. The two structural subfabric elements selected for comparison were crystallographic orientation of constituent anisotropic minerals and shape and orientation of pores or cracks. The longitudinal velocity symmetry in Yule marble appears to be axial, whereas in both Newberry Crater pumice and Salisbury granite the pattern is orthorhombic. The pattern of longitudinal velocity anisotropy is associated with preferred orientation of calcite optic axes in Yule marble, preferred orientation of elongate vesicles in the Newberry Crater pumice, and preferred orientation of microfractures in quartz in the Salisbury granite. A prospectus given suggests that the petrophysical technique described can be used to determine elastic symmetry, orient rock to inherent elastic symmetry axes, indicate sample homogeneity, and supplement conventional petrofabric techniques. References Alexandrov, K. S., T. V. Ryzhova, Elastic properties of rock-forming minerals: III feldspars, Bull. Acad. Sci. USSR, Geophys. Ser. No. 2, 129– 131, 1962. Babuska, V., Elastic anisotropy of igneous and metamorphic rocks, Studia Geophys. Geodaet., 12, 291– 303, 1968. Birch, F., The velocity of compressional waves in rocks to 10 kilobars, Part 1, J. Geophys. Res., 65, 1083– 1102, 1960. Birch, F., The velocity of compressional waves in rocks to 10 kilobars, Part 2, J. Geophys. Res., 66, 2199– 2224, 1961. Brace, W. F., Relation of elastic properties of rocks to fabric, J. Geophys. Res., 70, 5657– 5667, 1965. Chayes, Felix, On the association of perthitic microcline with highly undulant or granular quartz in some calcalkaline granite, Am. J. Sci., 250, 281– 296, 1952. Christensen, N. I., Compressional wave velocities in metamorphic rocks at pressures to 10 kilobars, J. Geophys. Res., 70, 6147– 6164, 1965. Christensen, N. I., Elasticity of ultrabasic rocks, J. Geophys. Res., 71, 5921– 5931, 1966a. Christensen, N. I., Shear wave velocities in metamorphic rocks at pressures to 10 kilobars, J. Geophys. Res., 71, 3549– 3556, 1966b. Christensen, N. I., R. S. Crosson, Seismic anisotropy in the upper mantle, Tectonophysics, 62, 93– 107, 1968. Councill, R. J., The commercial granites of North Carolina, N. Carolina Dep. Conserv. Develop. Bull., 67, 59, 1954. Davis, B. L., The small-circle net method in petrofabric analysis, Am. J. Sci., 262, 307– 324, 1964. Deer, W. A., R. A. Howie, J. Zussman, Rock-Forming Minerals, 4, Framework Silicates, 435, John Wiley and Sons, Inc., New York, 1963. Duvall, W. I., The effect of anisotropy on the determination of dynamic elastic constants of rock, SME Trans., 235, 309– 316, 1965. Fedorov, Fedor I., Theory of Elastic Waves in Crystals, transl. from Russian J. E. S. Bradley, 375, Plenum Press, New York, 1968. Ferreira, M. P., F. J. Turner, Microscopic structure and fabric of Yule Marble experimentally deformed at different strain rates, J. Geol., 72, 861– 875, 1964. Fogelson, D. E., Simulated lunar rocks, Proc. Working Group on Extraterrestrial ResourcesNASA SP-177, 75– 79Brooks Air Force Base, Texas19–21February, 1968. Kamb, Barclay W., Refraction corrections for universal stage measurements, 1, Uniaxial crystals, Am. Mineralogist, 47, 227, 1962. Kasahara, J., Isao Suzuki, Mineo Kumazawa, Kumizi Iida, Anisotropism of P-wave in dunite, in Japanese with English abstract, J. Seismol. Soc. Japan, 21, 222– 228, 1968a. Kasahara, J., Isao Suzuki, Mineo Kumazawa, Kumizi Iida, Anisotropism of S-wave in dunite, in Japanese with English abstract, J. Seismol. Soc. Japan, 21, 229– 236, 1968b. Klima, K., V. Babuska, A comparison of measured and calculated elastic anisotropies of marble, Studia Geophys. Geodaet., 12, 377– 384, 1968. Klima, K., O. Kulhanek, Quantitative correlation between preferred orientation of grains and elastic anisotropy of marble, IEEE Trans. Geosci. Electron., GE-63, 139– 143, 1968. Knopf, E. B., Fabric changes in Yule marble after deformation in compression, Am. J. Sci., 247, 433– 461537–569, 1949. McSkimin, H. J., Measurement of the 25°C zero-field elastic moduli of quartz by high-frequency plane-wave propagation, J. Acoust. Soc. Am., 34, 1271– 1274, 1962. McWilliams, J. R., The role of microstructure in the physical properties of rock, ASTM Spec. Tech. Publ., 402, 175– 189, 1966a. McWilliams, J. R., The brittle fracture of rocks, Eighth Symp. Rock Mech, 142– 145University of Minnesota, 1966b. Musgrave, M. J. R., Elastic waves in anisotropic media, Progr. Solid Mech., 2, 64– 85, 1961. Nye, J. F., Physical Properties of Crystals; Their Representation by Tensors and Matrices, 322, Clarendon Press, Oxford, 1957. Paterson, M. S., L. E. Weiss, Symmetry concepts in the structural analysis of deformed rocks, Geol. Soc. Am. Bull., 72, 841– 882, 1961. Peselnick, L., R. A. Robie, Elastic constants of calcite, J. Appl. Phys., 33, 2889– 2892, 1962. Pros, Z., andV. Babuska, A method for investigating the elastic anisotropy on spherical rock samples,Z. Geophysik, 33, 289– 291,April1967. Pros, Z., V. Babuska, An apparatus for investigating the elastic anisotropy on spherical rock samples, Studia Geophys. Geodaet., 12, 192– 198, 1968. Rinehart, J. S., Jean-Pierre Fortin, Lorraine Burgin, Propagation velocity of longitudinal waves in rocks, Fourth Symp. Rock Mech, 119– 135Pennsylvania State University, 1961. Sander, B., Gefugekunde der Gesteine, 352, Springer, Vienna, 1930. Simmons, Gene, Single crystal elastic constants and calculated aggregate properties, J. Graduate Res. Center, 24, 269, Southern Methodist University Press, Dallas, 1965. Thill, R. E., Petrofabric correlations with compressional wave velocity variation, M.S. thesis,University of Minnesota,March1967. Thill, R. E., J. R. McWilliams, T. R. Bur, An acoustical bench for an ultrasonic pulse system, BuMines Rept. Invest., 7164, 22, 1968. Turner, F. J., Preferred orientation of calcite in Yule marble, Am. J. Sci., 247, 593– 621, 1949. Turner, F. J., L. E. Weiss, Structural Analysis of Metamorphic Tectonites, 545, McGraw-Hill Book Co., New York, 1963. Vickers, B. L., R. E. Thill, A new technique for preparing rock spheres, J. Sci. Instr., 1969. Walsh, J. B., The effect of cracks on the compressibility of rock, J. Geophys. Res., 70, 381– 390, 1965. Willard, R. J., J. R. McWilliams, Microstructural techniques in the study of physical properties of rock, Intern. J. Rock. Mech. Mineral. Sci., 6, 1– 12, 1969. Wyllie, M. R. J., A. R. Gregory, L. W. Gardner, Elastic wave velocities in heterogeneous and porous media, Geophysics, 21, 41– 70, 1956. Citing Literature Volume74, Issue2015 September 1969Pages 4897-4909 ReferencesRelatedInformation

Referência(s)