Artigo Revisado por pares

Sedimentary Measurement of Cretaceous Time

1895; University of Chicago Press; Volume: 3; Issue: 2 Linguagem: Inglês

10.1086/607150

ISSN

1537-5269

Autores

George Gilbert,

Tópico(s)

Paleontology and Stratigraphy of Fossils

Resumo

Next article FreeSedimentary Measurement of Cretaceous TimeG. K. GilbertG. K. GilbertPDFPDF PLUS Add to favoritesDownload CitationTrack CitationsPermissionsReprints Share onFacebookTwitterLinkedInRedditEmail SectionsMoreDetailsFiguresReferencesCited by The Journal of Geology Volume 3, Number 2Feb. - Mar., 1895 Article DOIhttps://doi.org/10.1086/607150 Views: 126 Citations: 125Citations are reported from Crossref PDF download Crossref reports the following articles citing this article:Libby J. Robinson, Jessica H. Whiteside Models of organic enrichment in epicontinental basins: Applications of a large organic geochemical dataset from the Cretaceous Western Interior Seaway, Cretaceous Research 134 (Jun 2022): 105160.https://doi.org/10.1016/j.cretres.2022.105160Yiwen Ju, Guangzeng Wang, Sanzhong Li, Ying Sun, Yanhui Suo, Ian Somerville, Wuyang Li, Bizhu He, Menglin Zheng, Kun Yu Geodynamic mechanism and classification of basins in the Earth system, Gondwana Research 102 (Feb 2022): 200–228.https://doi.org/10.1016/j.gr.2020.08.017Daniel Galvão Carnier Fragoso, Matheus Kuchenbecker, Antonio Jorge Campos Magalhães, Claiton Marlon Dos Santos Scherer, Guilherme Pederneiras Raja Gabaglia, André Strasser Cyclicity in Earth sciences, quo vadis? Essay on cycle concepts in geological thinking and their historical influence on stratigraphic practices, History of Geo- and Space Sciences 13, no.11 (Apr 2022): 39–69.https://doi.org/10.5194/hgss-13-39-2022Andrew D. Miall The Scope of Modern Stratigraphy, (Jan 2022): 1–41.https://doi.org/10.1007/978-3-030-87536-7_1Andrew D. Miall Stratigraphy: The Modern Synthesis, (Mar 2022): 341–417.https://doi.org/10.1007/978-3-030-87536-7_7João M.P. Gomes, Aristóteles M. Rios-Netto, Leonardo Borghi, Ismar de Souza Carvalho, João G. Mendonça Filho, Lília D. Sabaraense, Bruno C. Araújo Cyclostratigraphic analysis of the early Cretaceous laminated limestones of the Araripe Basin, NE Brazil: Estimating sedimentary depositional rates, Journal of South American Earth Sciences 112 (Dec 2021): 103563.https://doi.org/10.1016/j.jsames.2021.103563Chunju Huang, James G. Ogg, David B. Kemp Cyclostratigraphy and astrochronology: Case studies from China, Palaeogeography, Palaeoclimatology, Palaeoecology 560 (Dec 2020): 110017.https://doi.org/10.1016/j.palaeo.2020.110017A.J.C. Magalhães, G.P. Raja Gabaglia, D.G.C. Fragoso, E. Bento Freire, R. Lykawka, C.D. Arregui, M.M.L. Silveira, K.M.T. Carpio, A. De Gasperi, S. Pedrinha, V.M. Artagão, G.J.S. Terra, R.B. Bunevich, E. Roemers-Oliveira, J.P. Gomes, J.I. Hernández, R.M. Hernández, C.H.L. Bruhn High-resolution sequence stratigraphy applied to reservoir zonation and characterisation, and its impact on production performance - shallow marine, fluvial downstream, and lacustrine carbonate settings, Earth-Science Reviews 210 (Nov 2020): 103325.https://doi.org/10.1016/j.earscirev.2020.103325Mathieu Martinez, Landry Guillois, Philippe Boulvais, Jean‐François Deconinck Inverted Responses of the Carbon Cycle to Orbital Forcing in Mesozoic Periplatform Marginal Basins: Implications for Astrochronology, Paleoceanography and Paleoclimatology 35, no.66 (Jun 2020).https://doi.org/10.1029/2019PA003705Michael Wagreich, Veronika Koukal The pelagic archive of short-term sea-level change in the Cretaceous: a review of proxies linked to orbital forcing, Geological Society, London, Special Publications 498, no.11 (Oct 2019): 39–56.https://doi.org/10.1144/SP498-2019-34Matthew M. Jones, Bradley B. Sageman, Rosie L. Oakes, Amanda L. Parker, R. Mark Leckie, Timothy J. Bralower, Julio Sepúlveda, Victoria Fortiz Astronomical pacing of relative sea level during Oceanic Anoxic Event 2: Preliminary studies of the expanded SH#1 Core, Utah, USA, GSA Bulletin 131, no.9-109-10 (Mar 2019): 1702–1722.https://doi.org/10.1130/B32057.1Mingsong Li, Chunju Huang, James Ogg, Yang Zhang, Linda Hinnov, Huaichun Wu, Zhong-Qiang Chen, Zhuoyan Zou Paleoclimate proxies for cyclostratigraphy: Comparative analysis using a Lower Triassic marine section in South China, Earth-Science Reviews 189 (Feb 2019): 125–146.https://doi.org/10.1016/j.earscirev.2019.01.011Graham P. Weedon, Kevin N. Page, Hugh C. Jenkyns , Geological Magazine 156, no.99 ( 2019): 1469.https://doi.org/10.1017/S0016756818000808Pamela S. Hill, Richard J. Behl Milankovitch Stratigraphy in the Miocene–Pleistocene Marine Succession of Offshore Central California, (Jan 2019): 215–232.https://doi.org/10.2110/sepmsp.110.16Masayuki Ikeda Astronomical cycles recorded in the sedimentary rhythms of deep-sea bedded chert and its significance on biogeochemical cycle, The Journal of the Geological Society of Japan 124, no.1212 (Dec 2018): 1033–1048.https://doi.org/10.5575/geosoc.2018.0061Christopher M. Lowery, R. Mark Leckie, Raquel Bryant, Khalifa Elderbak, Amanda Parker, Desiree E. Polyak, Maxine Schmidt, Oona Snoeyenbos-West, Erica Sterzinar The Late Cretaceous Western Interior Seaway as a model for oxygenation change in epicontinental restricted basins, Earth-Science Reviews 177 (Feb 2018): 545–564.https://doi.org/10.1016/j.earscirev.2017.12.001Mark D. Schmitz , ( 2018): 586.https://doi.org/10.1007/978-3-319-39312-4_283André Strasser Cyclostratigraphy of Shallow-Marine Carbonates – Limitations and Opportunities, (Jan 2018): 151–187.https://doi.org/10.1016/bs.sats.2018.07.001Mathieu Martinez Mechanisms of Preservation of the Eccentricity and Longer-term Milankovitch Cycles in Detrital Supply and Carbonate Production in Hemipelagic Marl-Limestone Alternations, (Jan 2018): 189–218.https://doi.org/10.1016/bs.sats.2018.08.002Chao Ma, Stephen R. Meyers, Bradley B. Sageman Theory of chaotic orbital variations confirmed by Cretaceous geological evidence, Nature 542, no.76427642 (Feb 2017): 468–470.https://doi.org/10.1038/nature21402Luca Barale The early geological exploration of the Nice region (French Maritime Alps) in the late 18th–19th centuries, Proceedings of the Geologists' Association 127, no.66 (Dec 2016): 747–760.https://doi.org/10.1016/j.pgeola.2016.11.010Khalifa Elderbak, R. Mark Leckie Paleocirculation and foraminiferal assemblages of the Cenomanian–Turonian Bridge Creek Limestone bedding couplets: Productivity vs. dilution during OAE2, Cretaceous Research 60 (May 2016): 52–77.https://doi.org/10.1016/j.cretres.2015.11.009Andrew D. Miall Stratigraphy: The Modern Synthesis, (Dec 2015): 311–370.https://doi.org/10.1007/978-3-319-24304-7_7Mark D. Schmitz Geologic Time Scale, (Jul 2016): 1–4.https://doi.org/10.1007/978-3-319-39193-9_283-1James S. Eldrett, Chao Ma, Steven C. Bergman, Aysen Ozkan, Daniel Minisini, Brendan Lutz, Sarah-Jane Jackett, Calum Macaulay, Amy E. Kelly Origin of limestone–marlstone cycles: Astronomic forcing of organic-rich sedimentary rocks from the Cenomanian to early Coniacian of the Cretaceous Western Interior Seaway, USA, Earth and Planetary Science Letters 423 (Aug 2015): 98–113.https://doi.org/10.1016/j.epsl.2015.04.026Tristan Salles, Guillaume Duclaux Combined hillslope diffusion and sediment transport simulation applied to landscape dynamics modelling, Earth Surface Processes and Landforms 40, no.66 (Dec 2014): 823–839.https://doi.org/10.1002/esp.3674Frederik J. Hilgen, Linda A. Hinnov, Hayfaa Abdul Aziz, Hemmo A. Abels, Sietske Batenburg, Joyce H. C. Bosmans, Bas de Boer, Silja K. Hüsing, Klaudia F. Kuiper, Lucas J. Lourens, Tiffany Rivera, Erik Tuenter, Roderik S. W. Van de Wal, Jörn-Frederik Wotzlaw, Christian Zeeden Stratigraphic continuity and fragmentary sedimentation: the success of cyclostratigraphy as part of integrated stratigraphy, Geological Society, London, Special Publications 404, no.11 (Oct 2014): 157–197.https://doi.org/10.1144/SP404.12Biljana Basarin, Bjoern Buggle, Ulrich Hambach, Slobodan B. Marković, Ken O'Hara Dhand, Andjelka Kovačević, Thomas Stevens, Zhengtang Guo, Tin Lukić Time-scale and astronomical forcing of Serbian loess–paleosol sequences, Global and Planetary Change 122 (Nov 2014): 89–106.https://doi.org/10.1016/j.gloplacha.2014.08.007Khalifa Elderbak, R. Mark Leckie, Neil E. Tibert Paleoenvironmental and paleoceanographic changes across the Cenomanian–Turonian Boundary Event (Oceanic Anoxic Event 2) as indicated by foraminiferal assemblages from the eastern margin of the Cretaceous Western Interior Sea, Palaeogeography, Palaeoclimatology, Palaeoecology 413 (Nov 2014): 29–48.https://doi.org/10.1016/j.palaeo.2014.07.002C. Ma, S. R. Meyers, B. B. Sageman, B. S. Singer, B. R. Jicha Testing the astronomical time scale for oceanic anoxic event 2, and its extension into Cenomanian strata of the Western Interior Basin (USA), Geological Society of America Bulletin 126, no.7-87-8 (Mar 2014): 974–989.https://doi.org/10.1130/B30922.1B. B. Sageman, B. S. Singer, S. R. Meyers, S. E. Siewert, I. Walaszczyk, D. J. Condon, B. R. Jicha, J. D. Obradovich, D. A. Sawyer Integrating 40Ar/39Ar, U-Pb, and astronomical clocks in the Cretaceous Niobrara Formation, Western Interior Basin, USA, Geological Society of America Bulletin 126, no.7-87-8 (Mar 2014): 956–973.https://doi.org/10.1130/B30929.1L. A. Hinnov Cyclostratigraphy and its revolutionizing applications in the earth and planetary sciences, Geological Society of America Bulletin 125, no.11-1211-12 (Oct 2013): 1703–1734.https://doi.org/10.1130/B30934.1A.R. Orme 10.2 The Four Traditions of Coastal Geomorphology, (Jan 2013): 5–38.https://doi.org/10.1016/B978-0-12-374739-6.00270-0Baptiste Sucheras-Marx, Fabienne Giraud, Vincent Fernandez, Bernard Pittet, Christophe Lecuyer, Davide Olivero, Emanuela Mattioli Duration of the Early Bajocian and the associated δ 13 C positive excursion based on cyclostratigraphy, Journal of the Geological Society 170, no.11 (Jan 2013): 107–118.https://doi.org/10.1144/jgs2011-133Carlton E. Brett, James J. Zambito, Eberhard Schindler, R. Thomas Becker Diagenetically-enhanced trilobite obrution deposits in concretionary limestones: The paradox of "rhythmic events beds", Palaeogeography, Palaeoclimatology, Palaeoecology 367-368 (Dec 2012): 30–43.https://doi.org/10.1016/j.palaeo.2011.12.004L.A. Hinnov, F.J. Hilgen Cyclostratigraphy and Astrochronology, (Jan 2012): 63–83.https://doi.org/10.1016/B978-0-444-59425-9.00004-4Masayuki Ikeda, Ryuji Tada, Hironobu Sakuma Astronomical cycle origin of bedded chert: A middle Triassic bedded chert sequence, Inuyama, Japan, Earth and Planetary Science Letters 297, no.3-43-4 (Sep 2010): 369–378.https://doi.org/10.1016/j.epsl.2010.06.027M.E. Baghli, M.M. Mouhoubi Séquence de dépôts binaire et discontinuités associées, Oil & Gas Science and Technology – Revue de l'Institut Français du Pétrole 65, no.22 (Sep 2009): 287–298.https://doi.org/10.2516/ogst/2009025Carlton E. Brett, Peter A. Allison, Austin J. W. Hendy Comparative Taphonomy and Sedimentology of Small-Scale Mixed Carbonate/Siliciclastic Cycles: Synopsis of Phanerozoic Examples, (Oct 2010): 107–198.https://doi.org/10.1007/978-90-481-8643-3_4Lawrence H. Tanner Cyclostratigraphic record of the Triassic: a critical examination, Geological Society, London, Special Publications 334, no.11 (Jun 2010): 119–137.https://doi.org/10.1144/SP334.6Jarosław Tyszka Foraminiferal response to seasonality modulated by orbital cycles in the Cretaceous mid-latitudes: The Albian record from the Lower Saxony Basin, Palaeogeography, Palaeoclimatology, Palaeoecology 276, no.1-41-4 (May 2009): 148–159.https://doi.org/10.1016/j.palaeo.2009.03.006C. R. C. PAUL, M. A. LAMOLDA , Geological Magazine 146, no.55 ( 2009): 625.https://doi.org/10.1017/S0016756809006463ALFRED G. FISCHER, ROBERT E. GARRISON The role of the Mediterranean region in the development of sedimentary geology: a historical overview, Sedimentology 56, no.11 (Jan 2009): 3–41.https://doi.org/10.1111/j.1365-3091.2008.01009.xALFRED G. FISCHER, FREDERIK J. HILGEN, ROBERT E. GARRISON Mediterranean contributions to cyclostratigraphy and astrochronology, Sedimentology 56, no.11 (Jan 2009): 63–94.https://doi.org/10.1111/j.1365-3091.2008.01011.xDelphine Desmares, Danièle Grosheny, Bernard Beaudoin Ontogeny and phylogeny of Upper Cenomanian rotaliporids (Foraminifera), Marine Micropaleontology 69, no.22 (Oct 2008): 91–105.https://doi.org/10.1016/j.marmicro.2008.07.003Huaichun WU, Shihong ZHANG, Qinghua HUANG Establishment of Floating Astronomical Time Scale for the Terrestrial Late Cretaceous Qingshankou Formation in the Songliao Basin of Northeast China, Earth Science Frontiers 15, no.44 (Jul 2008): 159–169.https://doi.org/10.1016/S1872-5791(08)60049-4Robert E. Locklair, Bradley B. Sageman Cyclostratigraphy of the Upper Cretaceous Niobrara Formation, Western Interior, U.S.A.: A Coniacian–Santonian orbital timescale, Earth and Planetary Science Letters 269, no.3-43-4 (May 2008): 540–553.https://doi.org/10.1016/j.epsl.2008.03.021Antony R. Orme The Rise and Fall of the Davisian Cycle of Erosion: Prelude, Fugue, Coda, and Sequel, Physical Geography 28, no.66 (May 2013): 474–506.https://doi.org/10.2747/0272-3646.28.6.474James R. Garrison, Donald Brinkman, Douglas J. Nichols, Paul Layer, Donald Burge, Denise Thayn A multidisciplinary study of the Lower Cretaceous Cedar Mountain Formation, Mussentuchit Wash, Utah: a determination of the paleoenvironment and paleoecology of the Eolambia caroljonesa dinosaur quarry, Cretaceous Research 28, no.33 (Jun 2007): 461–494.https://doi.org/10.1016/j.cretres.2006.07.007Hildegard Westphal Limestone–marl alternations as environmental archives and the role of early diagenesis: a critical review, International Journal of Earth Sciences 95, no.66 (May 2006): 947–961.https://doi.org/10.1007/s00531-006-0084-8Timothy White, Michael A. Arthur Organic carbon production and preservation in response to sea-level changes in the Turonian Carlile Formation, U.S. Western Interior Basin, Palaeogeography, Palaeoclimatology, Palaeoecology 235, no.1-31-3 (May 2006): 223–244.https://doi.org/10.1016/j.palaeo.2005.09.031Eugen Seibold, Ilse Seibold Milankovitch's Strahlenkurve und deren geologische Deutung - Anfänge in Deutschland, International Journal of Earth Sciences 94, no.33 (May 2005): 495–503.https://doi.org/10.1007/s00531-005-0484-1Andrew S. Gale, W. James Kennedy, Silke Voigt, Ireneusz Walaszczyk Stratigraphy of the Upper Cenomanian–Lower Turonian Chalk succession at Eastbourne, Sussex, UK: ammonites, inoceramid bivalves and stable carbon isotopes, Cretaceous Research 26, no.33 (Jun 2005): 460–487.https://doi.org/10.1016/j.cretres.2005.01.006Stephen R. Meyers, Bradley B. Sageman, Timothy W. Lyons Organic carbon burial rate and the molybdenum proxy: Theoretical framework and application to Cenomanian-Turonian oceanic anoxic event 2, Paleoceanography 20, no.22 (Apr 2005): n/a–n/a.https://doi.org/10.1029/2004PA001068Sascha Floegel, William W. Hay, Robert M. DeConto, Alexander N. Balukhovsky Formation of sedimentary bedding couplets in the Western Interior Seaway of North America—implications from climate system modeling, Palaeogeography, Palaeoclimatology, Palaeoecology 218, no.1-21-2 (Mar 2005): 125–143.https://doi.org/10.1016/j.palaeo.2004.12.011H. Pälike EARTH | Orbital Variation (Including Milankovitch Cycles), (Jan 2005): 410–421.https://doi.org/10.1016/B0-12-369396-9/00123-4Guillermina Sagasti Hemipelagic record of orbitally-induced dilution cycles in Lower Cretaceous sediments of the Neuquén Basin, Geological Society, London, Special Publications 252, no.11 (Jan 2005): 231–250.https://doi.org/10.1144/GSL.SP.2005.252.01.11Stephen R Meyers, Bradley B Sageman Detection, quantification, and significance of hiatuses in pelagic and hemipelagic strata, Earth and Planetary Science Letters 224, no.1-21-2 (Jul 2004): 55–72.https://doi.org/10.1016/j.epsl.2004.05.003Antony R. Orme American Geomorphology at the Dawn of the 20th Century, Physical Geography 25, no.55 (May 2013): 361–381.https://doi.org/10.2747/0272-3646.25.5.361Michel Hennebert, Christian Dupuis Proposition d'une échelle chronométrique autour de la limite Crétacé-Paléogène par cyclostratigraphie : coupe de l'Aïn Settara (Kalaat Senan, Tunisie centrale), Geobios 36, no.66 (Nov 2003): 707–718.https://doi.org/10.1016/j.geobios.2003.01.003Graham P. Weedon Time-Series Analysis and Cyclostratigraphy, 117 (Aug 2009).https://doi.org/10.1017/CBO9780511535482Jake M. Hancock Michael Robert House (1930–2002) and the start of Devonian cyclostratigraphy, Proceedings of the Geologists' Association 114, no.33 (Jan 2003): 271–274.https://doi.org/10.1016/S0016-7878(03)80020-2Wan Yang, Michelle A Kominz Characteristics, stratigraphic architecture, and time framework of multi-order mixed siliciclastic and carbonate depositional sequences, outcropping Cisco Group (Late Pennsylvanian and Early Permian), Eastern Shelf, north-central Texas, USA, Sedimentary Geology 154, no.3-43-4 (Jan 2003): 53–87.https://doi.org/10.1016/S0037-0738(02)00100-8NEIL E. TIBERT, R. MARK LECKIE, JEFFREY G. EATON, JAMES I. KIRKLAND, JEAN-PAUL COLIN, ELANA L. LEITHOLD, MICHAEL E. McCORMIC RECOGNITION OF RELATIVE SEA-LEVEL CHANGE IN UPPER CRETACEOUS COAL-BEARING STRATA: A PALEOECOLOGICAL APPROACH USING AGGLUTINATED FORAMINIFERA AND OSTRACODES TO DETECT KEY STRATIGRAPHIC SURFACES, (Jan 2003): 263–299.https://doi.org/10.2110/pec.03.75.0263C. BLAINE CECIL THE CONCEPT OF AUTOCYCLIC AND ALLOCYCLIC CONTROLS ON SEDIMENTATION AND STRATIGRAPHY, EMPHASIZING THE CLIMATIC VARIABLE, (Jan 2003): 13–20.https://doi.org/10.2110/pec.03.77.0013L.C. Cleaveland, J. Jensen, S. Goese, D.M. Bice, A. Montanari Cyclostratigraphic analysis of pelagic carbonates at Monte dei Corvi (Ancona, Italy) and astronomical correlation of the Serravallian-Tortonian boundary, Geology 30, no.1010 (Jan 2002): 931.https://doi.org/10.1130/0091-7613(2002)030 2.0.CO;2J Fenner Middle and Late Albian geography, oceanography, and climate and the setting of the Kirchrode I and II borehole sites, Palaeogeography, Palaeoclimatology, Palaeoecology 174, no.1-31-3 (Sep 2001): 5–32.https://doi.org/10.1016/S0031-0182(01)00285-1Andreas Prokoph, Jürgen Thurow Orbital forcing in a 'Boreal' Cretaceous epeiric sea: high-resolution analysis of core and logging data (Upper Albian of the Kirchrode I drill core — Lower Saxony basin, NW Germany), Palaeogeography, Palaeoclimatology, Palaeoecology 174, no.1-31-3 (Sep 2001): 67–96.https://doi.org/10.1016/S0031-0182(01)00287-5Andreas Prokoph, Mike Villeneuve, Frederik P. Agterberg, Volker Rachold Geochronology and calibration of global Milankovitch cyclicity at the Cenomanian-Turonian boundary, Geology 29, no.66 (Jan 2001): 523.https://doi.org/10.1130/0091-7613(2001)029 2.0.CO;2N. Fiet, G. Gorin Lithological expression of Milankovitch cyclicity in carbonate-dominated, pelagic, Barremian deposits in central Italy, Cretaceous Research 21, no.44 (Aug 2000): 457–467.https://doi.org/10.1006/cres.2000.0220A Prokoph, J Thurow Diachronous pattern of Milankovitch cyclicity in late Albian pelagic marlstones of the North German Basin, Sedimentary Geology 134, no.3-43-4 (Aug 2000): 287–303.https://doi.org/10.1016/S0037-0738(00)00050-6W Schwarzacher Repetitions and cycles in stratigraphy, Earth-Science Reviews 50, no.1-21-2 (May 2000): 51–75.https://doi.org/10.1016/S0012-8252(99)00070-7Jens Lehmann Integrated stratigraphy and palaeoenvironment of the Cenomanian-Lower Turonian (Upper Cretaceous) of northern Westphalia, North Germany, Facies 40, no.11 (Dec 1999): 25–69.https://doi.org/10.1007/BF02537468J Steenbrink, N van Vugt, F.J Hilgen, J.R Wijbrans, J.E Meulenkamp Sedimentary cycles and volcanic ash beds in the Lower Pliocene lacustrine succession of Ptolemais (NW Greece): discrepancy between 40Ar/39Ar and astronomical ages, Palaeogeography, Palaeoclimatology, Palaeoecology 152, no.3-43-4 (Sep 1999): 283–303.https://doi.org/10.1016/S0031-0182(99)00044-9N. J. Shackleton, I. N. McCave, G. P. Weedon, N. J. Shackleton, I. N. McCave, G. P. Weedon Preface to Astronomical (Milankovitch) calibration of the geological time–scale. A Discussion Meeting held at the Royal Society on 9 and 10 December 1998, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 357, no.17571757 (Jul 1999): 1733–1734.https://doi.org/10.1098/rsta.1999.0398N. J. Shackleton, I. N. McCave, G. P. Weedon, R. M. Carter, S. T. Abbott, T. R. Naish Plio-Pleistocene cyclothems from Wanganui Basin, New Zealand: type locality for an astrochronologic time-scale, or template for recognizing ancient glacio-eustacy?, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 357, no.17571757 (Jul 1999): 1861–1872.https://doi.org/10.1098/rsta.1999.0404N. J. Shackleton, I. N. McCave, G. P. Weedon, F. J. Hilgen, H. Abdul Aziz, W. Krijgsman, C. G. Langereis, L. J. Lourens, J. E. Meulenkamp, I. Raffi, J. Steenbrink, E. Turco, N. van Vugt, J. R. Wijbrans, W. J. Zachariasse Present status of the astronomical (polarity) time-scale for the Mediterranean Late Neogene, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 357, no.17571757 (Jul 1999): 1931–1947.https://doi.org/10.1098/rsta.1999.0408Peter A. Scholle, Troels Albrechtsen, Henrik Tirsgaard Formation and diagenesis of bedding cycles in uppermost Cretaceous chalks of the Dan Field, Danish North Sea, Sedimentology 45, no.22 (Mar 1998): 223–243.https://doi.org/10.1046/j.1365-3091.1998.0148e.xStéphane Reboulet, François Atrops Quantitative variations in the Valanginian ammonite fauna of the Vocontian Basin (southeastern France) within limestone-marl cycles and within parasequence sets, Palaeogeography, Palaeoclimatology, Palaeoecology 135, no.1-41-4 (Dec 1997): 145–155.https://doi.org/10.1016/S0031-0182(97)00023-0Donald H. Tarling, Bruno D'argenio, Marina Iorio Astronomical Influences on Biomagnetic Activity Some 120 MA ago: the Potential for Estimating the Evolution of Ancient Planetary Orbits within the Solar System, International Astronomical Union Colloquium 161 (Apr 2016): 245–252.https://doi.org/10.1017/S0252921100014767M. Brescia, B. D'Argenio, V. Ferreri, G. Longo, N. Pelosi, S. Rampone, R. Tagliaferri Neural net aided detection of astronomical periodicities in geologic records, Earth and Planetary Science Letters 139, no.1-21-2 (Mar 1996): 33–45.https://doi.org/10.1016/0012-821X(96)84608-5Werner Ricken Bedding rhythms and cyclic sequences as documented in organic carbon-carbonate patterns, Upper Cretaceous, Western Interior, U.S., Sedimentary Geology 102, no.1-21-2 (Mar 1996): 131–154.https://doi.org/10.1016/0037-0738(95)00060-7Pierre Cotillon, Fabienne Giraud Comparative evolution of material flux through two DSDP successions from Central Atlantic and Gulf of Mexico. Preliminary results of a new approach to sedimentary dynamics in pelagic environments, Marine Geology 122, no.44 (Feb 1995): 329–348.https://doi.org/10.1016/0025-3227(94)00119-6David K. Jacobs, Dork L. Sahagian Milankovitch Fluctuations in Sea Level and Recent Trends in Sea-Level Change: Ice may not always be the answer, (Jan 1995): 329–366.https://doi.org/10.1007/978-94-015-8583-5_11Michael R. House Orbital forcing timescales: an introduction, Geological Society, London, Special Publications 85, no.11 (Jan 1995): 1–18.https://doi.org/10.1144/GSL.SP.1995.085.01.01P. Cotillon Constraints for using high-frequency sedimentary cycles in cyclostratigraphy, Geological Society, London, Special Publications 85, no.11 (Jan 1995): 133–141.https://doi.org/10.1144/GSL.SP.1995.085.01.08Alfred G. Fischer Cyclostratigraphy, Quo Vadis?, Geological Society, London, Special Publications 85, no.11 (Jan 1995): 199–204.https://doi.org/10.1144/GSL.SP.1995.085.01.12Helmut Mayer Time-series analysis in cyclic stratigraphy: An example from the Cretaceous of the Southern Alps, Italy, Mathematical Geology 25, no.77 (Oct 1993): 975–1001.https://doi.org/10.1007/BF00891055G. Postma, F. J. Hilgen, W. J. Zachariasse Precession-punctuated growth of a late Miocene submarine-fan lobe on Gavdos (Greece), Terra Nova 5, no.55 (Sep 1993): 438–444.https://doi.org/10.1111/j.1365-3121.1993.tb00281.xBernard Courtinat The significance of palynofacies fluctuations in the Greenhorn Formation (Cenomanian-Turonian) of the Western Interior Basin, USA, Marine Micropaleontology 21, no.1-31-3 (Apr 1993): 249–257.https://doi.org/10.1016/0377-8398(93)90017-RZ. Huang, J. G. Ogg, F. M. Gradstein A Quantitative Study of Lower Cretaceous Cyclic Sequences from the Atlantic Ocean and the Vocontian Basin (Se France), Paleoceanography 8, no.22 (May 2010): 275–291.https://doi.org/10.1029/93PA00253 References, (Jan 1993): 209–219.https://doi.org/10.1016/S0070-4571(08)70428-XElisabetta Erba, Davide Castradori, Guido Guasti, Maurizio Ripepe Calcareous nannofossils and Milankovitch cycles: the example of the Albian Gault Clay Formation (southern England), Palaeogeography, Palaeoclimatology, Palaeoecology 93, no.1-21-2 (May 1992): 47–69.https://doi.org/10.1016/0031-0182(92)90183-6A. Berger, M. F. Loutre, J. Laskar Stability of the Astronomical Frequencies Over the Earth's History for Paleoclimate Studies, Science 255, no.50445044 (Jan 1992): 560–566.https://doi.org/10.1126/science.255.5044.560C. R. Paul Milankovitch cycles and microfossils: principles and practice of palaeoecological analysis illustrated by Cenomanian chalk-marl Rhythms, Journal of Micropalaeontology 11, no.11 (Jun 1992): 95–105.https://doi.org/10.1144/jm.11.1.95Andrew D. Miall Regional and global stratigraphic cycles, (Jan 1990): 446–498.https://doi.org/10.1007/978-1-4757-4235-0_8R. Nurmi, M. Charara, M. Waterhouse, R. Park Heterogeneities in carbonate reservoirs: detection and analysis using borehole electrical imagery, Geological Society, London, Special Publications 48, no.11 (Jan 1990): 95–111.https://doi.org/10.1144/GSL.SP.1990.048.01.09David K. Watkins Nannoplankton productivity fluctuations and rhythmically-bedded pelagic carbonates of the greenhorn limestone (upper cretaceous), Palaeogeography, Palaeoclimatology, Palaeoecology 74, no.1-21-2 (Nov 1989): 75–86.https://doi.org/10.1016/0031-0182(89)90020-5Don L. Eicher, Richard Diner Origin of the cretaceous bridge creek cycles in the western interior, United States, Palaeogeography, Palaeoclimatology, Palaeoecology 74, no.1-21-2 (Nov 1989): 127–146.https://doi.org/10.1016/0031-0182(89)90023-0A. Berger, M. F. Loutre, V. Dehant Influence of the changing lunar orbit on the astronomical frequencies of pre-Quaternary insolation patterns, Paleoceanography 4, no.55 (May 2010): 555–564.https://doi.org/10.1029/PA004i005p00555F.J. Hilgen, C.G. Langereis Periodicities of CaCO 3 cycles in the Pliocene of Sicily: discrepancies with the quasi-periods of the Earth's orbital cycles?, Terra Nova 1, no.55 (Sep 1989): 409–415.https://doi.org/10.1111/j.1365-3121.1989.tb00401.xAndrew S. Gale A Milankovitch scale for Cenomanian time, Terra Nova 1, no.55 (Sep 1989): 420–425.https://doi.org/10.1111/j.1365-3121.1989.tb00403.xA. Berger The Spectral Characteristics of Pre-Quaternary Climatic Records, an Example of the Relationship between the Astronomical Theory and Geo-Sciences, (Jan 1989): 47–76.https://doi.org/10.1007/978-94-009-2446-8_4Dag Nummedal, Robyn Wright, Donald J. P. Swift, Roderick W. Tillman, Niels R. Wolter Depositional systems architecture of shallow marine sequences, (Jan 1989): 35–79.https://doi.org/10.1029/FT119p0035Ellis Yochelson, Ellis Yochelson "Geologic Time" As Calculated By C. D. Walcott, Earth Sciences History 8, no.22 (Jan 1989): 150–158.https://doi.org/10.17704/eshi.8.2.j68n416801537r44 Thomas J. Algeo , and Bruce H. Wilkinson Periodicity of Mesoscale Phanerozoic Sedimentary Cycles and the Role of Milankovitch Orbital Modulation, The Journal of Geology 96, no.33 (Sep 2015): 313–322.https://doi.org/10.1086/629222Michael House Geological rhythms, cycles and other revolutions, Geological Magazine 124, no.33 (May 2009): 273–276.https://doi.org/10.1017/S0016756800016290W. Schwarzacher The analysis and interpretation of stratification cycles, Paleoceanography 2, no.11 (May 2010): 79–95.https://doi.org/10.1029/PA002i001p00079B. Pillans Quaternary Sea-level Changes: Southern Hemisphere Data, (Jan 1987): 264–293.https://doi.org/10.1007/978-94-015-1146-9_10J. P. Grotzinger Upward shallowing platform cycles: A response to 2.2 billion years of low-amplitude, high-frequency (Milankovitch band) sea level oscillations, Paleoceanography 1, no.44 (May 2010): 403–416.https://doi.org/10.1029/PA001i004p00403David J. Bottjer, Michael A. Arthur, Walter E. Dean, Donald E. Hattin, Charles E. Savrda Rhythmic bedding produced in Cretaceous pelagic carbonate environments: Sensitive recorders of climatic cycles, Paleoceanography 1, no.44 (May 2010): 467–481.https://doi.org/10.1029/PA001i004p00467Donald E. Hattin Interregional model for deposition of Upper Cretaceous pelagic rhythmites, U.S. western interior, Paleoceanography 1, no.44 (May 2010): 483–494.https://doi.org/10.1029/PA001i004p00483T. J. Glancy, E. J. Barron, M. A. Arthur An initial study of the sensitivity of modeled Cretaceous climate to cyclical insolation forcing, Paleoceanography 1, no.44 (May 2010): 523–537.https://doi.org/10.1029/PA001i004p00523Charles B. Officer, Charles L. Drake Epeirogeny on a short geologic time scale, Tectonics 4, no.77 (Jul 2010): 603–612.https://doi.org/10.1029/TC004i007p00603Eric J. Barron, Michael A. Arthur, Erle G. Kauffman Cretaceous rhythmic bedding sequences: a plausible link between orbital variations and climate, Earth and Planetary Science Letters 72, no.44 (Mar 1985): 327–340.https://doi.org/10.1016/0012-821X(85)90056-1A. Deprit, P. Bretagnon, A. Berger, P. L. de Boer, N. Shackleton, G. Kukla, P. Aharon, D. Adam, M. Sarnthein, N. Pisias, P. Pestiaux, G. E. Birchfield, M. Ghil, B. Saltzman, W. F. Ruddiman, M. E. Schlesinger Summary, Conclusions and Recommendations, (Jan 1984): 823–873.https://doi.org/10.1007/978-94-017-4841-4_24Hugh C. Jenkyns, Edward L. Winterer Palaeoceanography of Mesozoic ribbon radiolarites, Earth and Planetary Science Letters 60, no.33 (Oct 1982): 351–375.https://doi.org/10.1016/0012-821X(82)90073-5W. Schwarzacher, A. G. Fischer Limestone-Shale Bedding and Perturbations of the Earth's Orbit, (Jan 1982): 72–95.https://doi.org/10.1007/978-3-642-75829-4_5Alfred G. Fischer CLIMATIC OSCILLATIONS IN THE BIOSPHERE, (Jan 1981): 103–131.https://doi.org/10.1016/B978-0-12-519640-6.50012-0A. F. Trendall Revolution in earth history, Journal of the Geological Society of Australia 19, no.33 (Sep 1972): 287–311.https://doi.org/10.1080/00167617208728798Percy Evans References, Geological Society, London, Special Publications 5, no.11 (Jan 1971): 341–351.https://doi.org/10.1144/GSL.SP.1971.005.01.29 References, (Jan 1967): 253–270.https://doi.org/10.1016/S0070-4571(08)70132-8 W. Schwarzacher An Application of Statistical Time-Series Analysis of a Limestone-Shale Sequence, The Journal of Geology 72, no.22 (Sep 2015): 195–213.https://doi.org/10.1086/626976 Andrew B. Vistelius Sedimentation Time Trend Functions and Their Application for Correlation of Sedimentary Deposits, The Journal of Geology 69, no.66 (Sep 2015): 703–728.https://doi.org/10.1086/626784Roger Y. Anderson SOLAR-TERRESTRIAL CLIMATIC PATTERNS IN VARVED SEDIMENTS *, Annals of the New York Academy of Sciences 95, no.11 (Dec 2006): 424–439.https://doi.org/10.1111/j.1749-6632.1961.tb50048.x

Referência(s)
Altmetric
PlumX