Spectral reflectance of Martian meteorites: Spectral signatures as a template for locating source region on Mars
2005; Wiley; Volume: 40; Issue: 2 Linguagem: Inglês
10.1111/j.1945-5100.2005.tb00372.x
ISSN1945-5100
Autores Tópico(s)Isotope Analysis in Ecology
ResumoMeteoritics & Planetary ScienceVolume 40, Issue 2 p. 151-172 Free Access Spectral reflectance of Martian meteorites: Spectral signatures as a template for locating source region on Mars L. A. McFadden, Corresponding Author L. A. McFadden University of Maryland, Department of Astronomy, 2337 Computer and Space Sciences Building, College Park, Maryland 20742-2421, USA*[email protected]Search for more papers by this authorT. P. Cline, T. P. Cline University of Maryland, Department of Astronomy, 2337 Computer and Space Sciences Building, College Park, Maryland 20742-2421, USASearch for more papers by this author L. A. McFadden, Corresponding Author L. A. McFadden University of Maryland, Department of Astronomy, 2337 Computer and Space Sciences Building, College Park, Maryland 20742-2421, USA*[email protected]Search for more papers by this authorT. P. Cline, T. P. Cline University of Maryland, Department of Astronomy, 2337 Computer and Space Sciences Building, College Park, Maryland 20742-2421, USASearch for more papers by this author First published: 26 January 2010 https://doi.org/10.1111/j.1945-5100.2005.tb00372.xCitations: 18AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract Abstract— We report the spectral reflectance of Martian meteorites from 0.3-2.6 microns for the purpose of cataloguing spectra and the association of their spectral properties with mineralogy and petrology. We fit the spectra to a series of overlapping, modified Gaussian absorptions using least squares fitting. The results are validated against established relationships between photon interactions with mineral chemistry and the band parameters. These resultant band parameters can be used to constrain interpretations of Martian reflectance spectra in the search for the source region of meteorites from Mars. The limitations of the fitting method are discussed. REFERENCES Adams J. B. 1974. Visible and near-infrared diffuse reflectance spectra of pyroxenes as applied to remote sensing of solid objects in the solar system. Journal of Geophysical Research 79: 4829–4836. 10.1029/JB079i032p04829 CASADSWeb of Science®Google Scholar Adams J. B. 1975. Interpretation of visible and near-infrared diffuse reflectance spectra of pyroxenes and other rock forming minerals. In Infrared and raman spectroscopy of lunar and terrestrial materials, edited by C. Karr San Diego California: Academic Press. pp. 91–116. 10.1016/B978-0-12-399950-4.50009-4 Google Scholar Barlow N. G. 1997. Identification of possible source craters for the Martian meteorites ALH 84001. Proceedings, SPIE Annual Meeting 1997. pp. 26–35. Google Scholar Berkely J. L., Keil K., Prinz M., and Gomes C. B. 1979. The Governador Valadares nakhlite and its relationship to other nakhlites (abstract). 10th Lunar and Planetary Science Conference. p. 103. Google Scholar Bibring, J. P. The Omega Team 2004. The Omega/Mars Express First Results 2004 LPI35.2173B. Google Scholar Bishop J. L. and Hamilton V. E. 2001. Spectroscopic detection of minerals in Martian meteorites using reflectance and emittance spectroscopy and applications to surface mineralogy on Mars (abstract #P52B-0580). 2001 AGU Fall Meeting. Eos Transactions 82(47). Google Scholar Bishop J. L., Mustard J. F., Pieters C. M., and Hiroi T. 1998a. Recognition of minor constituents in reflectance spectra of Allan Hills 84001 chips and the importance for remote sensing on Mars. Meteoritics & Planetary Science 33: 693–698. 10.1111/j.1945-5100.1998.tb01675.x CASADSWeb of Science®Google Scholar Bishop J. L., Pieters C. M., Hiroi T., and Mustard J. F. 1998b. Spectroscopic analysis of Martian meteorite Allan Hills 84001 powder and applications for spectral identification of minerals and other soil components on Mars. Meteoritics & Planetary Science 33: 699–707. 10.1111/j.1945-5100.1998.tb01676.x CASADSWeb of Science®Google Scholar Bogard D. D. and Johnson P. 1983. Martian gases in an Antarctic meteorite Science 221: 651–654. 10.1126/science.221.4611.651 CASADSPubMedWeb of Science®Google Scholar Bogard D. D., Nyquist L. E., and Johnson P. 1984. Noble gas contents of shergottites and implications for the Martian origin of SNC meteorites. Geochimica et Cosmochimica Acta 48: 1723–1739. 10.1016/0016-7037(84)90028-0 CASADSWeb of Science®Google Scholar Bunch T. E. and Reid A. M. 1975. The nakhlites. I—Petrography and mineral chemistry. Meteoritics 10: 305–315. 10.1111/j.1945-5100.1975.tb01187.x Google Scholar Burns R. G. 1993. Mineralogical applications of crystal field theory, 2nd edition. New York: Cambridge University Press. 551 p. 10.1017/CBO9780511524899 Google Scholar Clayton R. N. 1993. Oxygen isotope analysis. In Antarctic Meteorite Newsletter 16(3), edited by R. Score and L. M. Huston Houston Texas: Johnson Space Center. pp. 4. Web of Science®Google Scholar Cloutis E. A., Gaffey M. J., Jackowski T. L., and Reed K. L. 1986. Calibrations of phase abundance, composition, and particle size distribution for olivine-orthopyroxene mixtures from reflectance spectra. Journal of Geophysical Research 91: 11,641–11,653. 10.1029/JB091iB11p11641 ADSWeb of Science®Google Scholar Cloutis E. A. and Gaffey M. J. 1991. Pyroxene spectroscopy revisited: Spectral-compositional correlations and relationship to geothermometry. Journal of Geophysical Research 96: 22,809–22,826. 10.1029/91JE02512 ADSWeb of Science®Google Scholar Cloutis E. A. 2002. Pyroxene reflectance spectra: Minor absorption bands and effects of elemental substitutions. Journal of Geophysical Research 107: doi 10.1029/2001JE001590. 10.1029/2001JE001590 Web of Science®Google Scholar Cloutis E. A., Sunshine J. M., Morris R. V. 2004. Spectral reflectance-compositional properties of spinels and chromites: Implications for planetary remote sensing and geothermometry. Meteoritics & Planetary Science 39: 545–565. 10.1111/j.1945-5100.2004.tb00918.x CASADSWeb of Science®Google Scholar Floran R. J., Prinz M., Hlava P. F., Keil K., Nehru C. E., and Hinthorne J. R. 1978. The Chassigny meteorite: A cumulate dunite with hydrous amphibole-bearing melt inclusions. Geochimica et Cosmochimica Acta 42: 1213–1229. 10.1016/0016-7037(78)90115-1 CASADSWeb of Science®Google Scholar Gaffey M. J. 1976. Spectral reflectance characteristics of the meteorite classes. Journal of Geophysical Research 81: 905–920. 10.1029/JB081i005p00905 CASADSWeb of Science®Google Scholar Goodrich C. A. 2002. Olivine-phyric Martian basalts: A new type of shergottite. Meteoritics & Planetary Science 37: B31–B34. 10.1111/j.1945-5100.2002.tb00901.x CASADSWeb of Science®Google Scholar Hale V. P. S., McSween H. Y., and McKay G. A. 1999. Reevaluation of intercumulus liquid composition and oxidation state for the Shergotty meteorite. Geochimica et Cosmochimica Acta 63: 1459–1470. 10.1016/S0016-7037(99)00095-2 CASADSWeb of Science®Google Scholar Hamilton V. E., Christensen P. R., and McSween H. Y. 1997. Determination of Martian lithologies and mineralogies using vibrational spectroscopy. Journal of Geophysical Research 102: 25,592–25,603. 10.1029/97JE01874 ADSWeb of Science®Google Scholar Harvey R. P. and McSween H. Y. 1992. Petrogenesis of the nakhlite meteorites—Evidence from cumulate mineral zoning. Geochimica et Cosmochimica Acta 56: 1655–1663. 10.1016/0016-7037(92)90232-8 CASADSWeb of Science®Google Scholar Hazen R. M., Bell P. M., and Mao H. K. 1978. Effects of compositional variation on absorption spectra of lunar pyroxenes. Proceedings, 9th Lunar and Planetary Science Conference. pp. 2919–2934. Google Scholar Ishii T., Takeda H., and Yanai K. 1979. Pyroxene geothermometry applied to a three-pyroxene achondrite from Allan Hills, Antarctica and ordinary chondrites. Mineralogical Journal 9: 460–481. 10.2465/minerj.9.460 CASADSGoogle Scholar King T. V. V. and Ridley W. I. 1987. Relation of the spectroscopic reflectance of olivine to mineral chemistry and some remote sensing implications. Journal of Geophysical Research 92: 11,457–11,469. 10.1029/JB092iB11p11457 CASADSWeb of Science®Google Scholar Laul J. C. 1986. The Shergotty Consortium and SNC meteorites: An overview. Geochimica et Cosmochimica Acta 50: 875–887. 10.1016/0016-7037(86)90370-4 CASADSWeb of Science®Google Scholar Lodders K. 1998. A survey of SNC meteorite whole-rock compositions. Meteoritics & Planetary Science 33: A183–190. 10.1111/j.1945-5100.1998.tb01331.x ADSWeb of Science®Google Scholar McFadden L. A., Wellnitz D. D., Schnaubelt M., Gaffey M. J., Bell III J. F., Izenberg N., Murchie S., and Chapman C. R. 2001. Mineralogical interpretation of reflectance spectra of Eros from NEAR near-infrared spectrometer low phase flyby. Meteoritics & Planetary Science 36: 1711–1726. 10.1111/j.1945-5100.2001.tb01858.x CASADSWeb of Science®Google Scholar McKay D. S., Gibson E. K., Thomas-Keprta K. L., Vali H., Romanek C. S., Clemett S. J., Chiller X. D. F., Maechling C. R., and Zare R. N. 1996. Search for past life on Mars: Possible relic biogenic activity in Martian meteorite ALH 84001. Science 273: 924–930. 10.1126/science.273.5277.924 CASADSPubMedWeb of Science®Google Scholar McSween H. Y., Taylor L. A., and Stolper E. 1979. Allan Hills 77005—A new meteorite type found in Antarctica. Science 204: 1201–1203. 10.1126/science.204.4398.1201 CASADSPubMedWeb of Science®Google Scholar McSween H. Y. and Jarosewich E. 1983. Petrogenesis of the Elephant Moraine A79001 meteorite: Multiple magma pulses on the shergottite parent body. Geochimica et Cosmochimica Acta 47: 1501–1513. 10.1016/0016-7037(83)90309-5 CASADSWeb of Science®Google Scholar McSween H. Y. 1985. SNC meteorites—Clues to Martian petrologic evolution Reviews of Geophysics 23: 391–416. 10.1029/RG023i004p00391 CASADSWeb of Science®Google Scholar McSween H. Y. 2002. The rocks of Mars, from far and near. Meteoritics & Planetary Science 37: 7–25. 10.1111/j.1945-5100.2002.tb00793.x CASADSWeb of Science®Google Scholar Mikouchi T. and Miyamoto M. 1998. Pyroxene and olivine microstructures in nakhlite Martian meteorites: Implications for their thermal history (abstract #1574). 29th Lunar and Planetary Science Conference. CD-ROM. Google Scholar Mittlefehldt D. W. 1994. ALH 84001, a cumulate orthopyroxene member of the Martian meteorite clan. Meteoritics 29: 214–221. 10.1111/j.1945-5100.1994.tb00673.x CASADSWeb of Science®Google Scholar Moroz L. and Arnold G. 1999. Influence of neutral components on relative band contrasts in reflectance spectra of intimate mixtures: Implications for remote sensing 1. Nonlinear mixing modeling. Journal of Geophysical Research 104: 14,109–14,121. 10.1029/1999JE900014 ADSWeb of Science®Google Scholar Mouginis-Mark P. J., McCoy T. J., Taylor G. J., and Keil K. 1992. Martian parent craters for the SNC meteorites. Journal of Geophysical Research 97: 10,213–10,225. 10.1029/92JE00612 ADSWeb of Science®Google Scholar Murchie S. et al. 2002. CRISM: Compact Reconnaissance Imaging Spectrometer for Mars on the Mars Reconnaissance Orbiter (abstract #1697). 33rd Lunar and Planetary Science Conference. CD-ROM. Google Scholar Mustard J. F. and Sunshine J. M. 1995. Seeing through the dust—Martian crustal heterogeneity and links to the SNC meteorites. Science 267: 1623–1626. 10.1126/science.7886449 CASADSPubMedWeb of Science®Google Scholar Mustard J. F., Murchie S., Erard S., and Sunshine J. 1997. In situ compositions of Martian volcanics: Implications for the mantle. Journal of Geophysical Research 102: 25,605–25,616. 10.1029/97JE02354 CASADSWeb of Science®Google Scholar Pieters C. M. 1983. Strength of mineral absorption features in the transmitted component of near-infrared reflected light—First results from RELAB. Journal of Geophysical Research 88: 9534–9544. 10.1029/JB088iB11p09534 ADSWeb of Science®Google Scholar Pieters C. M. 1996. Plagioclase and maskelynite diagnostic features (abstract). 27th Lunar and Planetary Science Conference. pp. 1031–1032. Google Scholar Puget P., Beney J. L., Bibring J. P., Langevin Y., Semery A., and Soufflot A. 1995. OMEGA IR spectral imager for Mars 96 mission SPIE 2583:323: 330. Google Scholar Rossman G. R. 1980. Pyroxene spectroscopy. In Pyroxenes, edited by C. T. Prewitt Reviews in mineralogy, vol. 7. Washington D. C.: Mineralogical Society of America. pp. 91–116. Google Scholar Rubin A. E., Warren P. H., Greenwood J. P., Verish R. S., Leshin L. A., and Hervig R. L. 2000. Petrology of Los Angeles: A new basaltic shergottite find (abstract #1963). 31st Lunar and Planetary Science Conference. CD-ROM. Google Scholar Schade U. and Wäsch R. 1999. Near-infrared reflectance spectra from bulk samples of the two SNC meteorites Zagami and Nakhla. Meteoritics & Planetary Science 34: 417–424. 10.1111/j.1945-5100.1999.tb01350.x CASADSWeb of Science®Google Scholar Singer R. B. 1981. Near-infrared spectral reflectance of mineral mixtures: Systematic combinations of pyroxenes, olivine, and iron oxides. Journal of Geophysical Research 86: 7967–7982. 10.1029/JB086iB09p07967 CASADSWeb of Science®Google Scholar Smith J. V., Steele I. M., and Leitch C. A. 1983. Mineral chemistry of the shergottites, nakhlites, Chassigny, Brachina, pallasites and ureilites. Proceedings, 14th Lunar and Planetary Science Conference. Journal of Geophysical Research 88: B229–B236. 10.1029/JB088iS01p0B229 ADSWeb of Science®Google Scholar Stöffler D., Ostertag R., Jammes C., Pfannschmidt G., Gupta, Sen P. R., Simon S. B., Papike J. J., and Beauchamp R. H. 1986. Shock metamorphism and petrography of the Shergotty achondrite. Geochimica et Cosmochimica Acta 50: 889–903. 10.1016/0016-7037(86)90371-6 ADSWeb of Science®Google Scholar Stolper E. M. and McSween H. Y. 1979. Petrology and origin of the shergottite meteorites. Geochimica et Cosmochimica Acta 43: 589–602. 10.1016/0016-7037(79)90167-4 CASADSWeb of Science®Google Scholar Sunshine J. M. and Pieters C. M. 1990. Extraction of compositional information for olivine reflectance spectra: A new capability for lunar exploration (abstract). 21st Lunar and Planetary Science Conference. pp. 1263–1264. Google Scholar Sunshine J. M., Pieters C. M., and Pratt S. F. 1990. Deconvolution of mineral absorption bands: An improved approach. Journal of Geophysical Research 95: 6955–6966. 10.1029/JB095iB05p06955 ADSWeb of Science®Google Scholar Sunshine J. M. and Pieters C. M. 1993a. Estimating modal abundances from the spectra of natural and laboratory pyroxene mixtures using the modified Gaussian model. Journal of Geophysical Research 98: 9075–9087. 10.1029/93JE00677 CASADSWeb of Science®Google Scholar Sunshine J. M. and Pieters C. M. 1993b. Determining the composition olivine on asteroidal surfaces (abstract). 24th Lunar and Planetary Science Conference. pp. 1379–1380. Google Scholar Sunshine J. M., McFadden L. A., and Pieters C. M. 1993. Reflectance spectra of the Elephant Moraine A79001 meteorite: Implications for remote sensing of planetary bodies. Icarus 105: 79–91. 10.1006/icar.1993.1112 ADSWeb of Science®Google Scholar Sunshine J. M. and Pieters C. M. 1998. Determining the composition of olivine from reflectance spectroscopy. Journal of Geophysical Science 103: 13,675–13,688. 10.1029/98JE01217 CASADSWeb of Science®Google Scholar Treiman A. H. and Sutton S. R. 1992. Petrogenesis of the Zagami meteorite: Inferences from synchrotron X-ray fluorescence (SXRF) microprobe and electron microprobe analyses of pyroxenes. Geochimica et Cosmochimica Acta 56: 4059–4074. 10.1016/0016-7037(92)90016-C CASADSWeb of Science®Google Scholar Treiman A. H., Gleason J. D., and Bogard D. D. 2000. The SNC meteorites are from Mars. Planetary and Space Science 48: 1213–1230. 10.1016/S0032-0633(00)00105-7 CASADSWeb of Science®Google Scholar Ueda Y., Mikouchi T., Miyamoto M., and Hiroi T. 2002. First analysis of the reflectance spectrum of Yamato-000593: The spectroscopic similarity between Yamato-000593 and Nakhla. Proceedings of the NIPR Symposium on Antarctic Meteorites 15. pp. 171–173. Google Scholar Weidner V. R. and Hsia J. J. 1981. Reflection properties of pressed polytetrafluoreothylene powder. Journal of the Optical Society of America 71: 856–861. 10.1364/JOSA.71.000856 CASADSWeb of Science®Google Scholar Xirouchakis D., Draper D. S., Schwandt C. S., and Lanzirotti A. 2002. Crystallization conditions of Los Angeles, a basaltic Martian meteorite. Geochimica et Cosmochimica Acta 66: 1867–1880. 10.1016/S0016-7037(01)00892-4 CASADSWeb of Science®Google Scholar Citing Literature Volume40, Issue2February 2005Pages 151-172 ReferencesRelatedInformation
Referência(s)